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OVERVIEW

In their research toxicologists often use routine testing protocols mandated for
regulatory purposes. However, other statistical techniques provide considerably
more abundant and precise information than do the standard techniques. Such
techniques (called survival analysis, failure time analysis, or life data analysis)
are in common use in other disciplines such as epidemiology, clinical medicine,
and engineering. They are readily implemented with several common software
packages (SAS, BMDP, SYSTAT, S-plus). This review develops a conceptual
understanding of these alternate techniques and provides examples of their use.
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INTRODUCTION

Lord Rutherford, the eminent British physicist, is often quoted as saying, “*If
your experiment needs statistics, you ought to have done a better experiment.””
In some situations, the analysis of toxicity data does not need statistics; an answer
is obvious when, for example, a large number of treated animals die while a
large number of controls are still alive. In most other situations, however, some
statistical analysis is essential. A good analysis both answers toxicological ques-
tions and quantifies the uncertainty in those answers. This chapter is concerned
with the techniques available to answer some common toxicological questions.

These techniques can be divided into two groups. The first are the techniques
mandated by regulation for use in routine toxicity testing. Standard bioassay
procedure for a short-term, dose-response experiment is to expose animals for
96 h, count the number of death, and calculate LC.;’s and their 93% confidence
intervals' (Am. Public Health Assoc., pp. 641-645). The focus in these studies
is the routine toxicological evaluation of a new chemical or material of unknown
constituents. Appropriate techniques are fast, easily performed, and not sensitive
to violations of statistical assumptions. However, we find a common tendency
for toxicological researchers to uncritically select these routine toxicity testing
protocols in their research efforts. This chapter will serve to introduce researchers
to some statistical technigues that provide considerably more abundant and pre-
cise information than do the standard techniques with only a small amount of
additional effort. These techniques, called survival analysis, failure-time anal-
ysis, or life data analysis, are widely used in medical and engineering research.™

Standard toxicity testing analysis starts with data on the percentage of indi-
viduals that survive some period (e.g., 24 or 96 h). Survival analysis starts with
the times at which individuals die. Collecting time-to-death data involves more
work than recording survival to a fixed endpoint, but significant statistical ben-
efits accrue from the small amount of additional work. Our goal in this chapter
is to develop a conceptual understanding of the analysis of time-to-death data
and provide examples and interpretation of data analysis using SAS™® programs.
Our examples were run using version 6.03 of SAS. Survival analysis programs
are also available in the BMDP, SYSTAT, and S-plus systems (Table 1). More
detailed and more theoretical treatments of survival analysis can be found else-
where.**”" Additional discussion of the application of failure-time analysis in
engineering and reliability studies can be found in Meeker and Hahn,* Nelson,?
and Nelson.”

The toxicological problem is to describe the effects of factors that modify
toxicity.'" Typically. such questions involve the impact of differences in envi-
ronmental conditions (water quality, pH), different test species. or individual
differences (such as size, sex, or acclimation) on toxicity. Statistically, these
questions can be answered by constructing a model that expresses how the time-
to-death is influenced by various factors. Given a suitable model, the influences
of factors can be estimated and hypotheses about them can be tested. Although
we will present techniques for both, our focus will be on estimation, because
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Table 1
Availability of Computer Software for Analysis of Censored Times-To-Death®

BMDP SAS S-PLUS SYSTAT

Estimate survival distibu- BMDP 1L PROC LIFETEST SURV.FIT SURVIVAL
tion

Test equality of survival EMDP 1L PROC LIFETEST SURV.DIFF SURWVIVAL

Fit accelerated life model —— PROC LIFEREG — SURVIVAL
Fit Cox model BMDP 2L PROC PHGLM COXREG SURVIVAL

* Absence of an analysis is indicated by a dash.

we find it more biologically informative than hypothesis testing. The biological
interpretation of estimates is quite different from the interpretation of a hypothesis
test, but estimation and hypothesis testing are closely linked in statistical theory."!

The effect of a factor can be expressed in various ways. Some typical examples
include the average time to death, the median time-to-death (the time at which
50% of the group has died). the concentration at which 50% had died (the LC,),
or the hazard function (the instantaneous probability of dying). The effect of a
factor can be expressed by a change in any one of these, not just the difference
in LC,, typically used.

Data from three studies will be used as examples to introduce and clarify the
concepts in survival analysis. We will reanalyze two classic data sets, one by
Litchfield'* on the survival of muberculoid mice administered streptomycin or a
placebo, and the second collected by Shepard'? on the survival of speckled trout
fry in water with various low concentrations of dissolved oxygen. We will also
describe in some detail an analysis of the effects of individual covariates on
survival of mosquitofish (Gambusia holbrooki) exposed to As."™ These studies
span a range of complexity from a comparison of 2 groups (mouse data), to a
dose-response comparison of 10 groups (trout data), to an analysis of the effects
of individual level covariates (mosquito fish data). Data for the mice and trout
examples are published in the original papers and are repeated in Tables 2 and
3. Data for the mosquito fish example are available from the authors and discussed
in this volume, Chapter 11.

DATA SETS

Consider the mouse data described by Litchfield,’ a classic example of the
estimation of mean time-to-death. Although it is a biomedical study, the prin-
ciples can be easily applied to metal toxicology. Litchfield presents data on the
survival of mice with tuberculosis. One group of 20 mice was treated with
streptomycin, while a larger group of B0 was left untreated. The data consist of
the number of days that each mouse survived (Table 2). It seems clear that
treatment with streptomycin prolongs the life of these mice, but let us use these
data to examine some different ways of describing and graphically presenting
survival patterns.

The trout data set is one part of large siudy of the resistance and tolerance of
speckled trout (Salvelinus fontinalis) to low oxygen levels.'* Trout fry were
acclimated to water containing 10.50 mg O./L; the water was then replaced with
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deoxygenated water containing from 0.77 to 1.77 mg O./L. The data are the
number of minutes until the fish died (Table 3). The experiment was terminated
at 5000 min; any fish still alive was recorded as censored at 5000 min.

The mosquitofish (Gambusia holbrooki) data set is part of a study of resistance
to metal and metalloid intoxication. Field-collected mosquitofish (754) were
acclimated to laboratory tanks and then exposed to 94 mg As/L in a continuous
flow-through exposure system. Every 3 h, dead fish were collected, counted,
sexed, and weighed. After 102 h, all remaining fish were collected, sexed, and
weighed. Again, survivors at the end of the experiment are recorded as censored
at 102 h. Genotypes of all fish at eight enzyme loci were determined with starch-
gel electrophoresis.'* Data are not presented here because of the large number
of observations.

The routine toxicity testing approach to all of these data sets would be to
calculate the percentage survivorship at some end point, often the end of the
experiment (e.g., survival to 96 h). In the mouse data, none of the 80 untreated
individuals were alive at 60 days, but 30% (6 out of 20) of the streptomycin-
treated mice were. However, the choice of 60 days as the end of the experiment
was arbitrary. If the experiment was ended at 20 days, the effect of streptomycin
would have appeared larger: none of the 80 untreated mice survived, but all of

Table 2
Survival Time of Mice Infected with Tuberculosis®

Number Dying in

Streptomycin
Day of Death Untreated Group
8 1
9 4
10 0
1 10
1 10
13 7
14 18
15 12
16
1
17
29
az2
ar
a9
42
43
44
47
52
59
Still alive at 60 days

* One group of 20 was treated with streptomycin; the other
group of B0 was left untreated. Experiment was terminated
at 60 days, at which time six streptomycin-treated mice
were still alive. Data from Litchfield.®
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Table 3
Survival Times of Trout Exposed to Different Dissolved Oxygen Concentrations®
0, Concentration (mg/l) Survival Times (min)
0.77 17, 18, 20, 20, 20, 21, 21, 22, 22, 23
0.94 20, 22, 24, 26, 26, 29, 29, 31, 34, 34, 1
1.10 25, 29, 33, 33, 37, 37, 37, 41, 48, 55
1.16 30, 30, 35, 35, 40, 45, 50, 58, 62, 70, 100
1.36 48, 52, 60, 85, 140, 160, 170, 190, 250
1.43 50, 50, 135, 175, 195, 215, 355, 405, 465, 600
1.55 165, 165, 195, 270, 270, 440, 440, 735, 865, 1400
1.69 195, 225, 270, 270, 440, 675, 995, 1150, 1150, 5000, 5000
1.77 240, 675, 995, 2080, 5000, 5000, 5000, 5000, 5000, 5000
1.86 400, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000, 5000

* The experiment was terminated at 5000 min. From 9 to 11 fish were exposed to each
concentration. Data from Shepard.™

the treated mice did. If the experiment had ended at 4 days, there would have
appeared to be no effect of streptomycin: all of the mice in both groups were
alive. What is needed is some way to describe patterns of survivorship and
mortality at all times during the experiment. This can be done using either the
survivor or hazard function.

SURVIVOR AND HAZARD FUNCTIONS
The survivor function [Equation (1)] describes the probability that an indi-
viduals survives longer than some time, 1.

S() = P[An individual dies after time 1] (1)

When the times-to-death of all individuals in a group are known, 5(¢) can be
estimated by the proportion of individuals still alive at time ¢ [Equation (2)].

_ # alive at time ¢

)= total # animals @
At the start of an experiment, 5(0) is 1.00; over time, it decreases to 0.00 when
the last individual dies. If the experiment is terminated before the last individual
dies, the survivors are counted into the denominator, but not the numerator, so
5(t,) remains above 0.00. Clearly, this function summarizes all information in
a table of times-to-death, but it is not the only way to do so. The hazard function
is a closely related alternative that describes different aspects of the pattern of
mortality.

The hazard function, or force of mortality,® describes the probability of dying
as a fraction of the number alive at the beginning of the period. It is mathe-
matically related to the survival function [Equation (3)].

—1dS()

hin) = —d logSi(r)idt = SO dr

(3
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It is often useful to know whether the hazard is constant over time (e.g., 10%
of the current survivors will die during any time interval), increases over time
(individuals are more likely to die at longer exposure durations), or decreases
over time (individuals are less likely to die as exposure duration increases).* The
shape of the hazard function is a useful tool to help choose a model for time-
to-death (see verifying assumptions in Estimation and Hypothesis Testing sec-
tion). The survivor and hazard functions for the untreated group of mice are

given in Figure 1. For these mice, the hazard increases as the duration of exposure
increases.

CENSORING

Computing the survival curve for the streptomycin-treated group of mice
introduces one complication: not all the animals have died by the end of the
experiment. We have partial information on these animals, because we know
that they survived 60 days in this study, but we do not know exactly when they
died. Censoring is characteristic of survival data, and sophisticated methods to
handle very general censoring mechanisms have been developed in the biomed-
ical literature ** The censoring in this study is very simple; all individuals are
censored at the same fixed time, the length of the experiment. Under a general

ar hit)

S [k}

Days

FIGURE 1. Survivor (—) and hazard (- - -} functions for untreated tuberculoid mice. Data
from Litchfield.'®
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censoring mechanism, the survival distribution can be estimated by the Kaplan-
Meier (also called the product-limit) estimator® |Equation (4)].

' d
Sl = T (1 - ;4) (4)
ST f,

where d, is the number of deaths occurring at time ¢, among the r, individuals
alive just before time 7,

If there is no censoring, this reduces to Equation (2) above. When censoring
occurs only at the end of the experiment, the Kaplan-Meier equation reduces to
Equation (2) at all times until the end of the experiment, and it has an undefined
value at later times.

Observations can be censored for many reasons. Often, in biomedical studies,
patients move away and are never heard from again, or they stop participating
for some other reason, or, as in the Litchfield data, the siudy ends before the
last animals die. The Kaplan-Meier estimate provides a consistent estimator of
the survival distribution for quite general censoring patterns. In general, the data
that we will analyze are pairs of numbers (T,,C ). T, is the observed time of death
or censoring, and C, is a censoring flag. If C, equals 0, T, is a time-to-death,
but if C, equals 1, T, is a censoring time.

Like every statistic calculated from data with variability, the estimated pro-
portion surviving to a particular time is not known exactly. The variance around
the survival curve can be approximated in several different ways, but Green-
wood's formula (see Cox and Oakes® for details) is frequently used. For the
special case of end point censoring, Greenwood’s estimator reduces to Equation
(5), the binomial variance, at all times before the end of the experiment.

Sl = 8

Var 5(1) = %

(3)

where N is the number of individuals in the study
5(¢r) is the estimated survival at time ¢

The variance is smallest at either end of the survival curve, when nearly all
individuals are still alive or when nearly all are dead. SAS computes approximate
95% confidence intervals around the survival curve as 1.96 V' Var. This con-
fidence interval assumes that the survival estimate is normally distributed, an
assumption which is reasonable for large samples. For small samples, the normal
assumption may not be appropriate, especially for survival estimates close to 0
or close to 1. In particular, the computed upper of lower bound to the 95%
confidence interval may be larger than 1 or smaller than 0, respectively. Other
ways to calculate the confidence interval avoid these problems (see Kalbfleish
and Prentice,® pp. 14-15 for details.)

PROC LIFETEST® will calculate and plot the Kaplan-Meier estimate of the
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Table 5
Results of Log-Rank and Wilcoxon Tests for the Equality of
Survival Distributions

Log-Rank Test Wilcoxon Test
Xz P= X x: P=X

Mouse data
Streptomycin vs untreated mice (1 d.f.) 62.67 00001 4126  0.0001
Trout data
Different O, exposures (3 d.f.) 258.30 00001 2174  0.0001
Mosguito fish data
Male vs female (1 d.f) 2495 00001 4583 0.0001
Among size groups, males only (5 d.f.) 37.02 00001 6343  0.0001
Amaong size groups, females only (5 d.f.) 13.95 0.016 2543  0.0001
Among GPI-2 genotypes (5 d.l.) 17.30 0.004 1950 0.0015
Among genotypes, males only (5 d.f.) B.74 0.12 541 0.37
Among genotypes, females only (5 d.f.) 932  0.097 13.33 0.02

From each table we can calculate the expected number of deaths in each group,
just as in a Chi-square test of independence. The log-rank statistic combines
information from all tables and all samples into an overall squared difference
that measures the similarity between the two survival curves. If the true survival
curves are identical, the observed log-rank statistic has an approximate Chi-
square distribution with k—1 degrees of freedom, where k is the number of
groups. The null hypothesis that the groups have the same survival curve can
be tested by comparing the observed log-rank statistic to a critical value from
the appropriate Chi-square distribution and rejecting the hypothesis if the ob-
served value is too large. For the Litchfield data, the observed log-rank statistic
is 62.7 with one degree-of-freedom (Table 5). This is extremely significant and
confirms our initial impression that the two survival curves are different.

The Gehan-Wilcoxon test tests the same hypothesis but differs in some math-
ematical details. One practical difference is that the Gehan-Wilcoxon test is more
sensitive to differences at earlier survival times. The log-rank test places more
emphasis on differences at later survival times, so the numerical results of the
two tests usually differ. Both tests can also be viewed as survival data analogs
of familiar nonparametric tests. For example, the Gehan-Wilcoxon test is the
censored data analog of the Kruskal-Wallis test.* Practically, the choice of log-
rank or Gehan-Wilcoxon test makes little difference in the interpretation of any
of the three data sets considered here (Table 5). In each study, the survival
curves for different groupings of the data are significantly different from each
other except for some sex-specific effects of PGI-2 genotype in the mosgquitofish
data (Table 5).

Both the log-rank and Gehan-Wilcoxon tests can be used to test whether some
factor modifies the effect of a toxicant. However, they require that the data be
grouped (e.g., treated with streptomycin/not treated), and they do not estimate
the size of that effect. They test only whether the two (or more) curves are
different. Many factors that might modify toxicant effects are naturally grouped
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{e.g.. sex or species), but many more are continuous (e.g.. size of animals, dose
of toxicant, and aspects of water chemistry). Such continuous covariates may
be artificially grouped, as was done in Table 5 for mosquito fish size. However,
more detailed statistical models can be used to test whether these factors have
any effect on the influence of a toxicant or to estimate the size of that effect.

MODELS FOR SURVIVAL TIMES

A second approach to testing the equality of survival distributions is to find
a statistical model to describe the data, use that model to estimate the differences
between the survivor functions, and then assess whether the differences are large
enough to be statistically significant. Two models are in common use: the pro-
portional hazards model [Equation (6)] and the accelerated failure time model
[Equation (7)].

hirx) = e“thy(n ()

log r, = fix) + ¢ (7

The proportional hazards model describes the effect of a particular treatment
by its influence on the hazard, the probability that a surviving individual will
die during a small interval of time [Equation (6)]. If a reference group (e.g.,
control animals) has a baseline hazard function hy(t), then the hazard of another
group is some multiple of the baseline hazard. The function " describes how
the treatment (x) determines the multiplier. If ¢ equals 2 for a particular group,
then the hazard for an individual in that group is twice the baseline hazard. Some
choices for f(x) are described below.

The accelerated life model [Equation (7)] describes differences between in-
dividuals as effects on the distribution of times-to-death, rather than effects on
the hazard. The differences between groups, f(x), can take any of the same
forms as in the proportional hazards model, but, in the accelerated time model,
fix) acts on the log of the time-to-death. The accelerated life model [Equation
{7)] can be converted into a model for the hazard [Equation (8)] that is slightly
different from the proportional hazards model in that the effect of the covariate
appears both in the multiplier of the hazard and inside the baseline hazard
function,

hit,x) = el"ith(re) (8)

This parametric approach requires that we specify the two parts of the statistical
model: the function f(x), which describes how the groups differ from one another,
and the error distribution, which describes the variability among individuals in
a group. The function fix) is chosen to reflect our assumptions about how a
particular covariate x influences the response of the animal. It may be any of
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the types of functions used in ordinary regression or analysis of variance. ' Some
possibilities are:

1. fiX) = a + BX linear response 0 a continously measured
covariate, e.g., waler lemperature
2. fiX) =a + blogX linear response to the log of a covariate, e.g.,
size
3. fiX) =a + bX + cX? polynomial response to a covanate
i, il mal different mean response in each group of
4. fiX) = { Bty individuals
m, if female

The types of models and the methods for choosing independent variables used
in linear regression' can also be applied to modeling of survival times.

In typical regression and analysis of variance applications, the error distribution
is assumed to be a normal distribution. However, a normal distribution is in-
appropriate for most time-to-death data because they are not symmetrical around
the mean. For example, the histogram of times-to-death of mosquito fish in an
acute arsenic exposure experiment has a long right tail (Figure 3). Although
many fish die in the first 40 h, some are still dying between B0 and 100 h, and
many are still alive at 102 h when the experiment was terminated. Other statistical
distributions that may be better descriptions of the distribution of times-to-death
include the exponential, Weibull, log-normal, and log-logistic distributions. Each

—

200
I

150
|

Mumber of deaths

T T T T 1
20 40 (=10 BO 100

Time to death (hours)
FIGURE 3. Times to death of mosquitofish in an acute arsenic exposure trial. The exper-

iment was terminated at hour 102. The poor fit of the normal distribution {solid
curve) is apparent. Data from Newman et al. ™
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Table &
Survivor Function, Density Function, and Transformations to Linearity for Some
Common Distributions of Time to Death”

Transformation
Distribution  Survivor Function Hazard Function Y-axis X-axis
Exponential & ™ @ log Sit) i
Weibull g tetP Ponfoet)y ! logl—log Sit] logt
Log-normal fog t — u @ty | - wliead) Probit{1— S(t)] log t
1_¢( a ) logt — p
v’?e"q'w[1 - rp(—)]
]
Log-logistic 1 pre o Log Sit) log t
1+ (bee)? 1+ [fa)? 1 - 51

@ |n the transformation, S{t) is the survivor function, the observed proportion of individuals
surviving to time & Probit is the tabulated probit function. d4x) is the standard normal
cumulative distribution function.

of these distributions has characteristic survival and hazard functions (Table 6).

The simplest of the distributions we will consider is the exponential distri-
bution, which is characterized by a constant hazard function (Figure 4). A
constant hazard means that the chance of a survivor dying is the same at all
times. Radioactive decay is an example of a physical process with a constant
hazard function. The density and survivor functions for the exponential distri-
bution are negative exponential functions (Table 6). This distribution is described
by one parameter, p, the mean lifetime of an animal, which is equal to the
reciprocal of the hazard. Larger values of p correspond to lower hazards, more
survivors, and fewer deaths in any time interval. The analysis of exponentially
distributed data is relatively simple, and much early analysis of failure-time data
was based on the exponential distribution,” but the assumption of a constant
hazard function is appropriate for very few biological systems. For example, the
hazard function from Litchfield's untreated mice (Figure 1) increases over time.

The Weibull distribution, a generalization of the exponential distribution, has
a hazard function that can take a variety of shapes, not just a flat line like that
of the exponential distribution. Weibull distributions are described by two pos-
itive parameters: «, the scale parameter that determines the spread and location
of the values, and [3, the shape parameter that determines the shape of the hazard
or survivor functions. If B = 1, the Weibull reduces to the exponential distri-
bution. If B < 1, the hazard is initially high and declines with time. If B = 1,
the hazard increases with time, and the survivor function is S-shaped (Figure
5). An intuitive interpretation of the Weibull distribution and the role of B is
that the Weibull describes the “‘weakest link™ mode of failure.® Consider an
individual to be composed of B parts, each of which has a constant hazard of
failing. If the individual dies when any one of the B parts fails, then the time-
to-death will fit a Weibull distribution. The Weibull distribution {and its special
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case, the exponential distribution) is the only distribution for which the accel-
erated time and the proportional hazards models are identical® because of the
mathematical form of the hazard and survivor functions.

Although the Weibull distribution is quite flexible, its hazard function is
monotonic: always increasing if B > 1 and always decreasing if B < 1. The
log-normal and log-logistic distributions are similar distributions with hazard
functions that may monotonically increase, monotonically decrease, or change
directions over time (Figure 6). The hazard curves for both distributions are
different for an accelerated time model and a proportional hazards model (Figure
7). For the proportional hazards model, the hazard of a treatment group is some
constant proportion of the baseline hazard at all times. The hazard for the ac-
celerated time model increases more quickly than the hazard under a proportional
hazards mode, and then declines closer to the baseline level (Figure 7). Although
the effect of the treatment is the same in the proportional hazard and accelerated
failure models, the median time of death and the distributions of times-to-death
will be different.

The choice of error distribution may or may not affect the estimation of
treatment effects. For example, the shapes of the log-normal and log-logistic
distributions are similar, so the substitution of one for the other usually makes
little difference. However, changing the error distribution from log-normal to
Weibull may substantially change the parameter estimates.

Time to death

FIGURE 4. Survival (—) and hazard (- - -) functions for a exponential distribution (e =
0.5).



22

St
hled

o 1 2 3 4 5]

Time to death

FIGURE 5. Survival (—) and hazard (- - -) tunctions for 2 Weibull distribution (e = 0.5,
B = 2).

Two technigues can help in choosing an appropriate error distribution. The
first is to compare maximum log-likelihoods for different models. These numbers
are calculated by the common technique of fitting a model (see next section for
details). For each model, the maximum value of the log-likelihood function is
an index of relative fit. Larger values indicate better fit. For example, if we use
a Weibull, log-normal, and log-logistic distribution to fit the mice data with
MODEL DAY*CENSOR(1) = TRT, the maximized log-likelihoods are 9.74,
7.21, and 5.84, respectively. The Weibull fits better than the other two distri-
butions because its log-likelihood is the largest. However, comparison of log-
likelihoods does not show that the Weibull is a good fit. Plotting cumulative
hazards, the second technique, can show that a particular distribution fits the
data (see Miller’, pp. 164-166 for details). In a cumulative hazard plot, a trans-
formation of the observed survival is plotted against the time-to-death or the log
of time-to-death (see Table 6 for details). The plot will be a straight line if the
error distribution fits the data. An example and SAS code to graph a hazard plot
is given in the section on Estimation and Hypothesis Testing.

Accelerated failure time models are models for time-to-death, but they can
be related back to traditional toxicological models for dose-response curves.
Consider an experiment in which time-to-death is recorded for individuals ex-
posed to different doses. A model with a linear response to dose and log-logistic
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errors can be transformed into a logistic dose-response model. Similarly, a model
with log-normal errors can become a probit dose-response model, and a model
with Weibull errors can be transformed into a Weibull dose-response model.™

ESTIMATION AND HYPOTHESIS TESTING

A statistical model for times-to-death specifies how various covariates influ-
ence the median time-to-death, but it does not specify the magnitude of the
influence. For example, a model for the Litchfield data might be

logt, = p+ 17, + ¢ (9
where . measures the average longevity in the control treatment the treatment
effect,

T, measures the change in longevity caused by streptomycin treatment
€, the errors, measure the differences among individuals in a group

Two models for the Shepard data might be

logt; = p + 1, + ¢ (10)

0,30 0.35

0.28

St}
hit)

T
0.20

Time to death

FIGURE 6. Survival (—) and hazard (- - -) functions for a log-normal distribution (u =
40, 0 = 20).
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FIGURE 7. Hazard functions for the log-normal distribution: (&, ——) a baseline hazard,

(B, —— ——) an accelerated time model, and (C, - - - - - ) & proportional hazard
models. The hazard is increased by 0.2 units in (B); the median survival time
is increased by 0.2 units in ().

where the treatment effect, 7., measures the difference in longevity between
a reference group and the group exposed to dose i

p measures longevity in the reference group,

€; measures the differences among individuals in a group

This model specifies that the groups exposed to various doses differ in their
longevity but does not specify any dose-response relationship between dose and
longevity. An alternate model that specifies a linear dose-response curve is

logr;, = o + Bx, + ¢, (11)

Here, the dose effect, B, measures the slope of the relationship between the dose
(x;) and the log-transformed time to death. A slope of (.69 means that the median
time-to-death doubles when the dose increases by 1 unit (natural log of 2 =
0.69). The intercept, o, measures the longevity for individuals with a dose of
0. Discrete and continuous parameters may be combined, as in the following
model for the mosquito fish data

logty = p+ o, + 7, + Bx; + €; (12)
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where the o, parameter measures the difference between sexes
7, parameters measure differences among genotypes
B parameter is a slope measuring the effect of size

Each model includes parameters (p, o, B, 7,) whose values must be estimated
from the data. If the error distribution is specified, estimates can be obtained by
maximum likelihood.* Briefly, maximum likelihood is a general procedure for
statistical estimation.?' The specified model, including the error distribution, is
used to construct a likelihood function, a function of the unknown parameters.
For any value of the unknown parameters, the likelihood function is proportional
to the probability of observing the data. Intitively, a good choice of estimate
is the value which maximizes the likelihood, These are the maximum likelihood
estimates (MLEs), which have many desirable statistical properties (see Edwards®
or Mood et al.'" for further details).

Three aspects of the likelihood function are useful. The MLEs are point
estimates of the parameter, providing values for the mean of a group or the slope
of a dose-response relationship, but they contain no information about vaniability.
The precision of an estimate can be obtained from the curvature of the likelihood
function around the maximum likelihood estimates. Usually, this curvature is
expressed as the asympototic variance of an estimate. If the estimate is very
precise, its asymptotic variance will be small, and the likelihood will decrease
quickly as one considers estimates slightly different from the maximum likelihood
estimate. Conversely, if the estimate is very poorly known, its asymptotic var-
iance will be large, and estimates slightly different from the MLE will be almost
as good. Finally, the log of the value of the likelihood function, calculated at
the MLEs, provides a measure of fit that can be used to compare different
models. This measure of fit is analogous to the model sum of sguares used in
regression analyses.

The likelihood function can be written down easily for any of the distnibutions
considered here but finding its maximum is not as simple. Closed-form analytical
expressions for the MLEs are available for an exponential error distribution but
are not available for other distributions. Estimates for other error distributions
have to be found by numerical iteration. SAS PROC LIFEREG?® can be used to
fit a wide variety of accelerated failure-time models using exponential, Weibull,
log-normal, and other error distributions. If the exponential or Weibull distri-
bution is used, then PROC LIFEREG is also fitting a proportional hazard model.

Details of the syntax of PROC LIFEREG can be found in the relevant SAS
manual, but briefly: The MODEL statement specifies the desired model, in-
cluding the response variable, a censoring indicator, the desired covariates, and
the appropriate error distribution_ Its syntax is

MODEL ttd*flaginumber) = covariates/D = distribution;

where ttd is the name of the variable containing the times-to-death (or times-
to-censoring)
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flag is a variable that identified whether that observation is a death or censored

The observation is treated as censored when the value of flag is the number in
parentheses. The list of covariates to be included in the model is specified as a
list of variable names to the right of the equals sign. Distribution is the name
of the error distribution. For example, the model statement to fit Equation (12)
with a log-normal distribution to the mosquitofish data is

MODEL TTD*CENSOR(1}
= SEX LOGSIZE GP12Z/D = LNORMAL,;

The variable CENSOR was created in a DATA step. CENSOR has the value of
0 if the fish died and | if the fish was still alive at 102 h. Multiple model
statements can be included in one PROC. By default, SAS will treat all covariates
as continuous linear variables. To declare a variable as a classification variable
includes it in a CLASS statement. The following SAS code fits Equation (12)
to a set of data. The CLASS statermnent is used to declare that SEX and GPI2
are classification variables. LOGSIZE, omitted from the CLASS statement, is
a continuous variable (log size).

proc lifereg data = arsenic.all;
class sex gpi2;
maodel ttd * censor(1) = sex logsize gpi2'd = Inormal;

The following example of output from PROC LIFEREG includes a summary
of the classification variables (if a CLASS statement was used), the dependent
and censoring variables, counts of the number of noncensored and censored
observations, and the error distribution. The maximized log-likelihood for the
madel is printed after the summary of variables. The parameter estimates, their
standard errors, Chi-square statistics, and their tail probabilities are printed on
a separate page. For each parameter, a 1 d.f. Chi-square statistic tests whether
that parameter equals 0. If a CLASS statement is used, a (& — 1) d.f. Chi-
square statistic tests whether any of the & level of the classification variable
differs from the other levels.

LIFEREG Procedure
Class Levels Values

SEX 2 female male
GPI2 B 100100 100766 100/38
GE/GE GE/38 38/38

Mumber of observations used = 751
Data Set = WORK.ALL
Dapendent Variable = Log (TTD)
Censoring Variable = FLAG
Censoring Value(s) =1
Moncensored Values = 626 Right Censored Values = 125
Left Censored Values = 0 Interval Censored Values = 0
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Log Likelihood for LNORMAL — BOB.9266927

Chi- Pr =
Variable d.f. Estimate SE Square Chi Label/Value
INTERCEPT 1 3.67BB0O4AS 0195743 3532178 0.0001 Intercept
SEX 1 12.93713 0.000:3
1 0.22B97392 0.06366 12.93713 0.0003 female
0 1] 0 ; g male
LOGSIZE 1 0.19420818 0.039026  24.763B9 0.0001
GP2 5 16.76149 0.0050
1 0.33847937 0.180507 3.51623 0.0608 100100
1 030274341 0.178672 2871011 0.0902 100/66
1 0.05067728 0.185455 0.07467 0.7847 10038
1 0.18769681 0.186692 1.010792 0.3147 6666
1 015954612  0.190794 0699264  0.4030 66/38
0 0 0 : 5 38/38
SCALE 1 070432209  0.020843 Mormal scale parameter

INTERPRETING PARAMETER ESTIMATES

The estimates and their standard errors calculated by PROC LIFEREG can
be interpreted in three different ways: as hypothesis tests, as shifts in median
time-to-death, and as relative risks. As a hypothesis test, they are used to answer
the question: does factor X have any influence on when individuals die? If it
does, then changing the level of factor X will change the median times-to death.
If X is a classification variable, then we can consider testing the hypothesis (H,):
Different levels of X have the same median time-to-death, against the alternate
{(H,): At least one level of X has a different median time-to death. An approximate
test of this hypothesis is calculated by SAS and presented as a (k- 1) degree-
of-freedom Chi-square test associated with each factor X, where k is the number
of levels of factor X. If X is a continuous variable, then the 1 d.f. Chi-square
statistic tests the hypothesis that the slope of the relationship between X and the
log time-to-death is zero. For example, using the previous SAS output, we find
that the two sexes are significantly different in their time-to-death (X* = 12.9,
P = 0.0003); size significantly affects time-to-death (X* = 24.8, P = 0.0001);
and at least one GFPI-2 genotype is significantly different from the rest (X* =
16.8, P = 0.005).

The tests calculated by SAS for each factor are approximate, because they
assume that each estimate is normally distributed. Technically, they are Wald
tests.” An alternate test for small samples is the likelihood ratio test,” which
can be calculated using the output from two runs of PROC LIFEREG. To test
whether factor X influences time-to-death, fit a model including factor X. Then,
fit a model without factor X_ If X has no influence on time-to-death, then the
model without X will fit as or almost as well as the model with X. Conversely,
if X has a large effect on time-to-death, then removing it from the model will
increase the lack of fit. The lack of fit of a model is quantified by the log-
likelihood statistic calculated by PROC LIFEREG for each model. A better fitting
model has a larger (less negative) log-likelihood value. If X has no effect, then
twice the difference between the two log-likelihood values is approximately
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distributed as a Chi-square random variable.™ As in the Wald test, the degrees-
of-freedom are (k— 1) if X is a classification variable with k levels and 1 if X is
continuous,

The estimates themselves can be used to calculate the shift in median time-
to-death. Remember the statistical model fit to the data is

logt; = n + BX; + ¢ (13}

If X is continuous, then a slope (B) of 0.5 means that the predicted log-trans-
formed time-to-death increases 0.5 units for every increase of 1 unit in X.
Transforming back from the log scale, a slope of 0.5 means that the predicted
median time-to-death increases to ¢"* = 165% of the original baseline value.
A slope of 0, indicating no effect. leads to a predicted median time-to-death of
g = 1 = 100% of the baseline value. A slope less than 0 means that the
predicted time-to-death decreases as X increases. If X is a classification variable,
then one of the groups is used as a reference group and the change in time-to-
death is relative to that group. By default, SAS uses the largest value of the
classification variable as the reference group. In the example given earlier, SEX
and GPI2 are class variables. Males and the 38/38 genotype were used by SAS
as the reference groups for SEX and GPI2, respectively. The estimate for females
(0.229) is the difference between females and males, and the estimate for each
GPI2 genotype is the different between that genotype and the 38/38 genotype.

If the model is a proportional hazards model, then estimates can be transformed
into relative risks. Relative risk is the ratio of the probability of dying if an
individual is in group X to the probability of dying if an individual is in the
reference group. Alternatively, relative risk is the ratio of the hazard for indi-
viduals in group X to the baseline hazard., It can be calculated using the estimate
from an accelerated failure time model by equation (14).

: s, — )& —7 fo for classification effects
Relative Risk = {r — B Avio for continuwous effects (14)

where 7, and [, are estimates of treatment differences and slopes, respectively
o is the estimated scale parameter from the SAS output
AX is the desired difference between two values of a continuous variable

For the model and estimates given earlier, the relative risk of females (Relative
to males of the same size and genotype) is ¢ "2%0™ = (.722. The relative
risk of an 0.15-g individual (logsize = — 1.90), relative to an 0. 10-g individual
(logsize = —2.30) is g~ 19U-1W-1=230 = (.02 Relative risks greater than
1 mean that, at any point in time, individuals in group X are more likely to die
than are individuals in the baseline group. Relative risks less than | mean that
individuals in group X are less likely to die. Relative risk has a clear interpretation
in proportional hazards models {e.g., accelerated failure-time models with ex-
ponential or Weibull distributions) where the ratio between the two hazards 1%
the same at all times. It is less useful for other models.
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CALCULATING MEDIAN TIMES-TO-DEATH

It is often useful to calculate the predicted median time-to-death for an indi-
vidual having some combination of characteristics. This can be done using SAS
PROC LIFEREG. The median time-to-death and its standard error can be cal-
culated from characteristics of the individual (X, the parameter estimates (B, 7,,
and &), the estimated scale parameter (&), and the choice of error distribution
|Equation (15)].

Median TTD = exp(jt + &, + T, + Bx, + aW,.) (15)

W, ., the median of the standardized error distribution, depends on the choice
of distribution. For the log-normal distribution, W, ; is 0. For the exponential
and Weibull distributions, W, ; is —0.36635. These calculations can be performed
by SAS (see section on Case Study for an example).

VERIFYING ASSUMPTIONS

Any statistical model makes assumptions that should be checked as part of a
carcful analysis. If Weibull or exponential distributions are used in an accelerated
failure time model, we assume that:

1. Hazards are proportional.
Then an accelerated failure time model makes three major assumptions:

2. Baseline hazard distribution is correctly specified,
3. Response to the covariates is correctly specified.
4.  Observations are independent.

Most of these assumptions can be assessed using simple graphical tools. We
will present methods for verifying that the first three assumptions are appropriate.
Good experimental design helps justify the last assumption that observations are
independent.

The proportional hazards assumption can be checked by dividing the data into
groups of similar observations and plotting a cumulative hazard curve for each
group (see test in section on Censoring and below). If the data contain continuous
covariates, it will be necessary to divide the covariate into a small number of
groups (2-4, depending on sample size). For each group, calculate the Kaplan-
Meier estimate of the survival distribution, then plot log[ — log 5ir)] against 1 or
log . If the hazards are proportional, the curves will be parallel (Figure 8). If
the sample sizes are small, the variability in each curve is high, and the eye can
easily see nonparallel lines, even if the hazards are proportional. It is often
helpful to compute the approximate 95% confidence interval around each survival
estimate, then log-log transform the upper and lower bounds for the confidence
interval to help judge whether the lines are parallel.



229

Hazard plots can help assess the choice of error distribution (Miller,” pp. 164-
166). If the error distribution is Weibull (or exponential), the plot of log[ — log
8(1)] vs log ¢ will be a straight line (see Figure 8). Other transformations (Table
6) can be used to evaluate log-normal or log-logistic distributions. SAS will
calculate and plot hazard curves in PROC LIFETEST, but one must do additional
calculations to plot the confidence bounds. One can use PROC LIFETEST to
estimate 5(r) and its standard error with PROC LIFETEST, use a DATA step
to calculate and transform the confidence interval, and plot the curves (see the
following code). For small samples (e.g., 50 individuals per group), the variation
in the curves may mask a truly straight line. To continue the analysis of the
mice data (started in the censoring section) the following SAS code plots hazard
curves for treated and untreated mice.

MContinuation of Analysis of Litchfield data 1o plot hazard curves */
data curves2,

sat curves;

log _ttd = logiday);

lls = log( - log(survival));

lower = log( - log(sdf _lcl));

upper = log(— logisdf _ ucl));

plot plat;
plot lowerlog _td = “—" upper’log _ttd = “+" lis"log _ttd = tri‘overlay;

title ‘Log( — Log S{t)) vs Log TTD for each group’;
litle2 ‘with confidence interval’;

The form of response to covariates can be tested graphically or by fitting
augmented models. Consider what might be a reasonable way to improve the
functional form and see if that augmented model actually does fit the data better.
If the original model includes a linear response to a continuous covariate, a
possible augmented model is a quadratic, or perhaps a cubic, equation. If the
model includes two continuous covariates, a possible augmented model includes
the cross-product of the two variables. If the model includes two classification
variables, a possible augmented model may include the interaction between the
two variables. The augmented model will always fit the data better because we
are using more variables. The relevant statistical question is whether the im-
provement in the fit is significant. The log-likelihoods reported by PROC LI-
FEREG for each model can be used to construct a likelihood ratio test™ for the
significance of the improvement.

We will test whether a linear dose-response model is adequate to describe the
mortality patterns of trout exposed to low oxygen. In the subsequent SAS code
(following the next paragraph), the first MODEL staternent, labeled *‘Linear,”
fits a model with a linear response to oxygen level. The second, labeled **Quad,"™”
augments the linear model to include a quadratic response. The third, labeled
*Loglin,”" fits a model with a linear response to log-transformed oxygen level.
The last, labeled “*Groups,” fits a model with a different mean for each group.
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If any of the first three models is appropriate, then that model will fit almost as
well as the groups model. These calculations are repeated for just the intermediate
group of oxygen levels in the second PROC LIFEREG step. Log-normal error
distributions were chosen because plots of log [ — log S(1)] vs log r were not
straight lines.

Statistical tests of the improvements in fit can be constructed from the SAS
output (Table 7). If the groups model fits just as well as a linear model, then
twice the difference in likelihoods has a Chi-square distribution. The degrees-
of-freedom for the Chi-square is the difference of the number of parameters in
each model. For the complete data the Chi-square statistic to test the fit of the
linear or loglin models has 8 d.f. because the **Groups®” model has 11 parameters
{10 means and | scale parameter), while the linear models each have 3 parameters
(1 intercept, | slope, and 1 scale parameter). If twice the observed difference
in log-likelihoods exceeds a critical Chi-square statistic, once concludes that the
full model fits significantly better. For these data, the linear model is not sufficient
to describe the response to all doses, but it is adequate for the intermediate doses
(Table 7). This approach cannot be used to test between a linear response and
a log-linear response because both models have 3 parameters. Technically, the

Laog Harard

Log Time to geath

FIGURE 8. Hazard plots for simulated data. Data were generated from a proportional
hazards model with Weibull errors. Vertical bars indicate 95% confidence
intervals for S(t) at selected times. The relative risk of group 2 (- - -), relative
to group 1 (—— ——), was 4.48. The ralative risk of group 3 | i
relative to group 1, was 20,
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Table 7
Summary of Log-Likelihood and Tests of Fit of Linear Models for
Trout Data
Log-Likelihood (d.f. in model)

Intermediate
Model All Doses Doses
Groups —~112.48(11) —B7.73(7)
Linear response —132.82(3) BB.14(3)
Quadratic response —115.45(4) — 68.06(4)
Log-linear response = 146,13(3) — GA.71(3)

- 24 Log-Likelihood (d.f.,p)

Intermediate
Test of Fit All Doses Doses
Linear response vs groups 40.68(8, 0.0001) 0.82(4, 0.94)
Cuadratic response vs groups 5.94{7, 0.55) 0.66(3, 0.64)
Linear vs quadratic response 34.74(1, 0.0001) 0.16(1, 0.88)
Log-linear response vs groups  67.30(8, 0.0001) 1.96(4, 0.74)

likelihood ratio test is valid when one model is nested in the full model.* Both
the linear and log-linear models are nested in the groups model, but the linear
model is not nested in the log-linear model.

data shepard;
infile cards missover;
input o ftd @&
log _o = loglo)
o_group = o
o2 =0"0;
do until {ttd =)
if ttd = 5000 then censor = 1;
else censor = (0,

output,

input ttd @;

end,
cards,;

077 17 18 20 20 21 21 22 22 23

084 20 22 24 26 26 20 29 31 34 34 41
110 25 26 33 33 37 37 37 41 48 55

116 30 30 35 35 40 45 50 58 62 VO 100
136 48 52 60 85 140 160 170 190 250

143 50 50 135 175 185 215 355 405 4656 600

1.55 1656 165 185 270 440 440 735 865 1400

169 195 225 270 270 440 675 985 1150 1150 5000 5000
177 240 675 995 2080 5000 5000 5000 S000 5000 SO000
1.86 400 5000 5000 5000 5000 35000 5000 5000 S000 5000

proc lifereg;

title “all groups';

class o _ group;

Linear: model ttd*censor(1) = o'd = Inomal,
Quad: model ttd*censori1) = o 02'd = Inormal;
Loglin: model ttd*censon(1) = log _ofd = Inormal;

Groups: model ttd*censor(1) = o_group’d = Inormal;



232 METAL ECOTOXICOLOGY: CONCEPTS & APPLICATIONS

proc lifereg;
title ‘intermediate groups’;
where o between 0.95 and 1.76;
class o _ group;
Linear: model tid*censor{1) = o/d = Inormal;
Quad: model td*censor(1) = o 02/d = Inormal;
Loglin: model ttd*censor(1) = log _od = Inormal;

Groups: moded ttd*censor(1) = o _groupd = Inormal;

Unlike SAS PROC GLM, PROC LIFEREG will not automatically generate
the quadratic, cross-product, or interaction terms. To fit such models, one should
create a new variable for each new term in the model. For example, to test for
possible interaction between two classification variables, we can create a new
variable containing a unique value for each combination of the two original
variables. An easy way to do this in SAS is to use the string concatenation
operator, ||, if the two original variables are character variables. The importance
of a quadratic or cross-product term can be tested by including new variables
containing the square of the original variable or the product of two original
variables, respectively.

GROUPED TIMES-TO-DEATH

All of the preceding analyses have assumed that the exact time-to-death was
recorded; hence, time-to-death is a continuous variable, As in any measurement,
the fineness of the measuring scale imposes some discreteness on what theoret-
ically could be a continuous variable. In the mosquitofish data, dead fish were
collected every 3 h, so that time-to-death is recorded as 9 h, or 12 h, but never
as 10.3 h. Even so, time-to-death may be considered continuous in these data
because 3 h is short relative to the 102-h duration of the experiment.

What if deaths were recorded weekly in a 12-week experiment (e.g., Quattro
and Vrijenhoek™)? Here the interval between measurements is a sizable fraction
of the duration. An animal recorded as a death at week 3 actually died between
the second and third weeks. Although we do not know the exact time-to-death,
we know that it falls within a certain interval. PROC LIFEREG will fit parametric
survival models to such interval censored data (see following code). Animals
still alive at the end of the experiment are right censored, just as before. Parameter
interpretations are the same as those for exact data.

™ SAS code to fit interval censored model to discrete times to death “
™ experiment terminated at week 12, !
™ survivors to week 12 are coded in the raw data as ftd = 13 and are )
/* right censored,
* observed deaths occurred between observed ttd and previous week
data interval;

input trt ttd;

[~ If the animal was alive at the end of the experiment, code it as right censored at week
12
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if ttd == 12 then do;
lower = 12;
upper = .;

end;

/ But if it died during the experiment, code it as interval censored between the previous
week and this week *f

else do;

lower = ttd — 1;
upper = tid;
and;

proc lifereq;
class trt;
maodel (lower,upper) = i,

CASE STUDY: THE INFLUENCE OF SEX, SIZE, AND GENOTYPE
ON ARSENIC INTOXICATION

As part of a larger study of metal tolerance in mosquitofish, we examined the
roles of sex, size, and genotype as modifying factors affecting As intoxication.
A summary of the data collection protocol is provided in Data Sets; further
details are given in Newman et al." The primary concern in this study was
whether fish with particular genotypes were more sensitive than other genotypes
to As intoxication. To increase the precision of comparisons between genotypes,
it was necessary to control potential variation due to the effects of size and sex.
We analyzed the effects of different genotypes at eight enzyme loci, but this
analysis will be restricted to the effects at one locus, GPI-2. The guestions we
wish to answer are:

Are males and females equally sensitive to the effects of As?
Are larger individuals of either sex more resistant to As?
Does the genotype at the GPI-2 locus influence survival?

rps D

The first step in the analysis is to group individuals into size classes and
calculate survival curves for each sex, size, and genotype class. Hazard plots
for each sex (Figure 9a) are linear until approximately 42 h (log + = 3.75),
when the slopes decrease, but are not parallel. Similar patterns are found among
different sizes classes of male or female fish and among different genotypes
(Figure 9b). A Weibull error distribution is not appropriate because the hazard
plots are not linear and parallel across all the data. The Weibull would not be
an appropriate distribution even if two modes of action were postulated for As,
one responsible for deaths before 42 h and one after 42 h, because the lines are
not parallel.

The differences between survival curves for different sexes, different size
classes, and different genotypes are statistically significant by either the log rank
test or the Wilcoxon test (Table 5). When each sex is considered separately, the
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FIGURE 9. Hazard plots for mosquitofish exposed to arsenic (a) males (- - -) and females
i— and (b) four of the six genotypes at the GPI-2 locus; 38/38 (—), 66/
66 (....), 100100 (- - -), 10066 [— —).

survival curves for different GPI-2 genotypes are significantly different in females
(using the Wilcoxon test) but are not significantly different in males (using either
test). Fewer of the experimental animals were males, so the lack of significant
differences between GP1-2 genotypes may just be a result of low statistical power.
Accelerated time models can be used to verify that the effects of GPI-2 genotype
are different in the two sexes.

Perhaps the simplest reasonable model that includes the effects of sex, size,
and genotype is Equation (12), in which sex and genotype are classification
variables and some function of size is a continuous variable. The form of the
response to size can be estimated from plots of log time-to-death versus various
transformations of size. There is considerable scatter in these plots, but the plots
of log(size) appear to be more linear than those against untransformed size. A
log transformation of size is commonly a better predictor of other measures of
toxic potency, such as LD, (ref. 24) (see also this volume, Chapter 4). The
following SAS code fits this model using both Weibull and log-normal error
distributions.

proc lifereg data = arsenic.all;

class sex gpi2;

model ftd censor(1) = sex logsize gpi2;

model td censor(1) = sex logsize gpi2'd = Inormal;

tithe ‘Basic model — comparison of Weibull and lognormal errors’;
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The log-likelihood of the model using the log-normal error distnibution ( — 808.9)
is less negative than that from the Weibull distribution ( — 884.8), indicating that
the log-normal is the more appropriate error distribution, as expected from the
hazard plots (Figures 9a, b). This model assumes that the response to size and
GPI-2 genotype is the same in male and females. These assumptions can be
tested by fitting more general models. The following SAS code constructs new
variables and fits two models to test whether the response to size differs between
males and females.

data sexsize,;

sel arsanic.all;

misize = 0,

flsize = 0;

if sex = ‘M’ then misize = logsize;
else flsize = logsize;

sexgsize = flsize

proc lifereq;
class sex gpi2;
2sex: model d*cansor(1) = sex misize flsize gpi2’d = Inormal;
sexdiff: model ttd*censor(1) = sex logsize sexsize gpi2'd = Inormal;

The log-likelihood for either model is — 804 8, a statistically significant im-
provement from a model with the same slope for both sexes. The two models
differ in how the differences between the sexes are parameterized. In the model
labeled **2sex,’" separate slopes are fit for males and females. These estimates
of these slopes can be directly interpreted, but the test of whether the two slopes
are different must be hand calculated from the log-likelihood statistics. The model
labeled *“*sexdiff’” parameterizes the slope as the slope for males (LOGSIZE)
and the difference between the male and female slopes (SEXSIZE). The SEXSIZE
coefficient is an estimate of the difference between the slopes; the test of whether
SEXSIZE equals 0 tests the hypothesis that the slopes are equal. The log-
likelihoods of the two models are the same, because they are different forms of
exactly the same model.

A similar procedure could be used to construct five new variables to test the
SEX*GPI2 interaction (five variables are necessary because the GPI2 classifi-
cation variable has five degrees-of-freedom), but an even more general model
can be used to test whether there are any other interactions. The following SAS
code fits separate models to the male and female data.

proc gort data = arsenic.all;
by sex;

proc lifereg;
by sex;
class gpi2,
model ttd censor{1) = logsize gpi2 /d = Inormal;
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The log-likelihood statistics {and degrees-of-freedom) for each sex can be
added together to calculate the log-likelihood and degrees-of-freedom for a model
in which each parameter (intercept, slope for log of size, effect of GPI-2 gen-
otype, and scale) is allowed to differ between the sexes. The improvement in
fit for this model is small (log-likelihood of full model is — 803.6) and is not
statistically significant (Table 8).

Estimates and their standard errors can be obtained directly from the SAS
output (Table 9). Each estimate can be interpreted as the difference in log-
transformed median time-to-death caused by a 1 unit change in that variable.
Sizes of male and female fish are continuous variables, so the estimates can be
interpreted like slope estimates from an analysis of covariance. For example,
for a male fish, each 00.2-unit increase in log(size) increases the log-transformed
median time-to-death by (0.2)(0.53) = 0.106 units. For females, the same
change results in an increase of (0.2)(0.157) = 0.031 units. Transformed from
the log scale, an 0.2-unit increase in size leads to ™' = 1.11 {or 11% larger)
predicted median time-to-death in males and €' = 1.03 (or 3% larger) in
females. SEX and GPI-2 are classification variables that can be interpreted like
groups in analysis of variance. The estimate of the SEX effect is the difference
between the intercept for male fish and the intercept for female fish. The estimates
for each GPI-2 effect are the differences between that genotype and the last
genotype (in this case, the 38/38 genotype). For example, the estimated effect
of the 100/100 genotype is 0.35. Hence, the 100/100 genotypes have a predicted
median time-to-death that is ¢** = 1.42 times as long as the median time-to-
death for fish with the 38/38 genotype. Because the error distribution was log-
normal rather than Weibull, the estimates cannot be interpreted as relative risks.

Rather than interpret estimates directly, it is possible to calculate the median
times-to-death for individuals with specified characteristics and interpret them.
For example, Table 10 presents characteristics of 12 individuals with different
combinations of sexes, genotypes, and sizes that span realistic values. The

Table 8
Summary of Log-Likelihood Tests for Mosquito Fish Date
Log-
Model Error Dist. Likelihood d.f. in Model
1. Sex Log(size) GPI-2 Weibull ~884.8 9
2. Sex Logisize) GPI-2 Log-normal —B08.9 8
3. Sex Log(size) Sex*Log(size) GPIl-2 Log-normal — B04.8 10
4, Both sexes: Log(size) GPI-2 Log-normal —B03.6 16
Females only: Logisize) GPI-2 Log-normal —565.4 B
Males only: Log(size) GPI-2 Log-normal -238.2 8
Tests of fit —2A Log-likelihood Adf. P> X°
Does response to size differ between sexes?
Model 2vs 3 8.2 1 0.0044

Do any other parameters differ between sexes?
Maodal 3 vs 4 24 G 0.88
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Table 9

Parameter Estimates and Hypothesis Tests for Model “'2sex™

{see Case Study section) Fit to Mosquito Fish Data

Parameter d.f. Estimate({SE) X P=X
Intercept 1 4.30(0.29) 2167  0.0001
Sex 1 —0.45(0.24) 33 0.0678
Logisize) for males 1 0.53(0.12) 184  0.0001
Logisize) for females 1 0.157(0.041) 148  0.0001
GPI-2 (overall) 5 17.1 0.0043
GPI-2, effect of 100100 1 0.35(0.18)

GPI-2, effect of 100/66 1 0.31{0.18)

GPI-2, effect of 10038 1 0.06(0.18)

GPI-2, effect of G6/66 1 0.18(0.18)

GFI-2, effect of 66/38 1 0.18(0.19)

GPI-2, effect of 38/38 0 0.00(0.00)

Table 10

Estimated Median Times to Death for Fish with Various
Combinations of Traits Using Model “2sex”
{see Case Study section) Fit to Mosquito Fish Data

Sex Sizelg) GPI-2 genotype Median TTD (h) SE Median

Female 0.15 100/100 49.6 3.0
Female 0.25 100100 53.8 29
Female 0.35 100100 56.7 31
Male 0.15 100100 38.2 26
Male 0.25 100100 50.1 4.6
hale 0.35 100100 59.6 T4
Female 0.30 1000100 55.4 a0
Female 0.30 100/66 h3.2 2.6
Female 0.30 100/38 41.4 29
Female 0.30 66/66 471 3.4
Fermnale 0.30 66/38 46.7 3.8
Female  0.30 38/38 391 8.7

following SAS code calculates predicted median times-to-death for individuals
with those characteristics.

data controls;

inpul sex § size gpi2 §

logsize = logisize);

misize = 0,

flsize = O;

if sax = ‘M’ then misize = logsize;
glse flsize = logsize;

predict = 1;
td =_;
censor = .;
cards,
F 0.15 100100
F 0.25 100:100
F .35 100100

M 0.15 100100
M 0.25 1001100
M 0.35 100100
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F 0.30 100100
F 0.30 100/66
F 0.30 100/38
F 0.30 B6/6E

F 0.30 66/38

F 0.30 38/38

data all;
set sexsize controls;

proc lifereg data = all;

class sex gpi2;

model ttd*censon(1) = sex misize flsize gpi2 /d = Inormal;

output out = preds control = predict p = med _tid std = se _ med;

proc print;
title ‘Predicted median times to death’
var sex size gpi2 med _ iid se _ fid;

The strategy in this SAS code is to create a data set containing a combination
of characteristics for each new individual. The time-to-death for the new indi-
viduals is set to the SAS missing value code, so that the new individuals are
not used to estimate the parameters of the model. The predicted median time-
to-death and its standard error are written to a new SAS data set by the OUTPUT
command. The CONTROL = option includes only the new individuals in the
output data set. The relevant parts of this new data set are then printed onto the
SAS listing file.

Median times-to-death (Table 10) are computed from the estimates, so they
should show the same patterns as the parameter estimates; however, we feel that
the median times-to-death are more easily interpreted. Small males die more
quickly than either larger males or females (Table 10), and the response to size
is different between the sexes. Increasing the size of female fish from 0.15 to
0.25 increases the median time-to-death by 4.2 h (Table 10). A similar increase
in size of male fish leads to a much larger increase (11.9 h) in median TTD.,
Genotype has a large effect on either sex fish; there is a 16.3 h difference between
the median time-to-death for the most resistant genotype (100/100) and the most
susceptible genotype (38/38).

COX PROPORTIONAL HAZARDS MODEL

The accelerated life models fit by SAS PROC LIFEREG assume specific
forms for the baseline hazard function and error distribution. An altermative class
of models, called Cox proportional hazard models,* makes no assumptions about
the form of the baseline hazard function. Instead, they make the proportional
hazards assumption, i.e., that the effect of a covariate is to multiply the hazard
function by a constant that does not change over time [see Equation (6)]. Such
models are commonly used in the analysis of medical data, where the assumption
of proportional hazards appears to be generally acceptable.' As discussed before
(see Verifying Assumptions), plots of the hazard function can be used to verify
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the appropriate choice of error distribution. If none of the distributions adequately
fits the data, a Cox model might be appropriate.

The Cox model has other advantages over accelerated life models. Often, one
is more interested in describing the influence of covariates on survival than in
describing the baseline hazard., By using a Cox model, one can estimate the
effects of covariates while ignoring the unknown baseline hazard function. Also,
the Cox model is less affected by outliers, unusually large or small failure-times,
because the computations use only the rank ordering of failure and censoring
times.* Cox proportional hazard models can be fit by the supplemental SAS
procedure PHGLM,* which is available in some implementations of SAS, and
by procedures in BMDF, SYSTAT, and S-Plus (Table 1). The covanates in a
Cox proportional hazard model may be any combination of continuous or clas-
sification variables, like the covariates in an accelerated failure-time mode. The
one difference is that a Cox model does not include an intercept.

If a Cox model is fit to the As data, the conclusions are similar to those
obtained by fitting accelerated failure-time models. The parameter estimates
{Table 11) are different from those obtained from an accelerated life model with
a log-normal error distribution (Table 9), but the results of the hypotheses tests
are the same, except for influence of size in females. In particular, there is still
evidence that certain genotypes survive longer than do others. The difference in
sign and magnitude of the estimates has two causes: (1) a mathematical difference
in parameterization between proportional hazards and accelerated failure-time
models* and (2) use of the log-normal error distribution (for which an accelerated
time model is not a proportional hazards model) rather than the Weibull or
exponential distributions.

Estimates from the Cox model can be interpreted as relative risks (see section
Interpreting Parameter Estimates), because different hazard functions are as-

Table 11

Results from Fitting a Cox Proportional Hazards Model to the
Arsenic Data*

Parameter d.f. Estimate (SE) x P=X
Sex 1 0.364(0.365) 099 0.32
Log(size) for males 1 —0.508(0.183) 7.67 0.0056
Logisize) for females 1 =0.129(0.067) 373 0053
GPI-2 Overall 5 1504 0.010
GPI-2, 100100 —0.59(0.27)

GPI-2, 100/66 —0.50(0.27)

GPI-2, 100/38 —0.18(0.28)

GPI-2, 6666 = 0.40(0.28)

GPI-2, B6/38 —0.28(0.29)

GPI-2, 3838 0.00(0.00)

4 The model included the same covariates used in the model 2sex in
Case Study section. Computations done with the COXREG and
COXREG.PRINT functions in 5-Plus. Overall test of GPI-2 genotypes
computed from output of the COXREG function.
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sumed to be proportional, so the relative risk is constant over time. For estimates
from Cox models, the relative risk is computed using Equation (16).

. .o | €L for classification effects
Relative Risk = { § e A I (16)

For example, the estimate of the effect of the 100/100 genotype at the GPI-2
locus is —0.586, so the relative risk for an individual with that genotype is
e "% = (1,557, In other words, such an individual is more likely to survive
than is a reference individual.

Unlike the accelerated time models, the Cox model does not directly provide
estimates of the median time-to-death. However, the entire survival curve (in-
cluding the median) can be described if the baseline survival function is estimated.
An estimate of the baseline survival curve is usually available in the output of
the program that fits the Cox model.

The major assumption in a Cox model is that the baseline survival function
is the same for all individuals. This assumption can be relaxed by stratifying the
data into groups and estimating a separate baseline survival curve for each group.
This is not quite the same as a separate analysis for each group; in a stratified
analysis, a covariate is assumed to have the same effect in each stratum. Any
potential covariate (e.g., GPI-2 genotype in the As data set), can be modelled
it either as a covanate or as a variable that defines sirata. When included as a
covariate, its effect is estimated and tested, but the hazards are assumed to be
proportional. When included as strata, the effects are not estimated, but the
hazards do not have to be proportional .

Including stratification variables provides a way to check the proportional
hazards assumption.® Calculate the baseline survival curve for each stratum, then
plot log [ — log 5(t)] against log t for each stratum. Just as in the hazard plots
seen previously (in Verifying Assumptions), parallel lines on the plot suggest
that the hazards are proportional. If a Weibull or exponential error distribution
is appropriate, then the lines will also be straight. To check whether the pro-
portional hazards assumption is appropriate for the effects of the GPI-2 genotype
in the As data, a Cox model was fit using sex, male size, and female size as
covariates and GPI-2 genotypes as strata. The hazard plots for each genotype
are essentially parallel. Hence, we can assume that hazard functions for each

genotype are proportional.

SUMMARY

There is a tendency for environmental toxicologists to uncritically select rou-
tine toxicity testing protocols in their research efforts. This can be unfortunate,
as statistical techniques are available that provide considerably more abundant
and precise information than do the standard techniques. One such class of

techniques that uses time-to-death information to construct survival models is
described.
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A general review of survival analysis is provided using three data sets of
increasing complexity. Modeling survival times with proportional hazards and
accelerated failure-time models is introduced and compared briefly to standard
techniques. The choice of distribution for survival analysis is discussed, with
emphasis on the Weibull, exponential, and log-normal distributions. Cox pro-
portional hazards models are described briefly. Techniques for parameter esti-
mation and hypothesis testing are illustrated using an As toxicity data set.

These models provide a statistically powerful and conceptually easy way fo
assess the modifying effects of environmental conditions (e.g., water guality)
or subject characteristics (e.g., fish size) in acute toxicity tests.
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