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Abstract — Power and exponential models are used frequently in environmental chemistry and toxi-
cology. Such models can generate biased predictions if derived with least-squares, linear regression
of log-transformed variables. An easily calculated but seldom used estimate of bias can enhance the
accuracy of subsequent predictions, This prediction bias and means of correcting it are presented,

along with several examples.
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INTRODUCTION

Power and exponential relationships are common
in most quantitative disciplines. In environmental
chemistry and toxicology, predictive applications
range from flow-related variation in water quality
[1] to factors influencing toxicity [2,3]. The most
frequently used method of fitting such data is least-
squares, linear regression using logarithms of the
X and Y variables (power relationships) or the Y
variable (exponential relationships). This procedure
involves four steps. First, the variables are trans-
formed to their logarithms with base 10 or e. Sec-
ond, the variables are fit using least-squares, linear
regression methods. Next, the correlation coeffi-
cient (r) and a plot of regression residuals vs. the
independent variable (X or log X'} may be used to
judge the adequacy of model fit to the data. Finally,
the linear model is transformed back to the origi-
nal arithmetic units.

The resulting power (Y = mX ™) or exponential
(¥ = m 10°%) model may then be used to predict
values of ¥ given X. However, inherent in the steps
described above is a bias that detracts from the ac-
curacy of associated predictions. This bias and
means of minimizing its influence have been dis-
cussed elsewhere [1,3-6]: however, it remains ig-
nored in most studies. There may be two reasons
for this oversight in the fields of environmental
chemistry and toxicology. First, if the immediate
goals of the treatment did not include prediction,
then the bias correction would be irrelevant. Unfor-

Log-transformed variables

tunately, many such published models are used by
later workers for prediction in modeling or risk as-
sessment activities. Alternatively, the bias may re-
main uncorrected because a general, straightforward
statement of its prevalence and potential influence
in environmental sciences has not been developed
to date. The purpose of this paper is to provide such
an assessment. The logic is identical to that of ear-
lier, more restricted discussions [3,6]. However, the
prevalence of the bias will be emphasized rather
than specific application of bias correction. Previ-
ous discussions are also expanded to include pre-
diction bias in expenential relationships.

THE PROBLEM
Power relationships

Conforming to the notation of Neter et al. [7],
the regression model used to describe power rela-
tionships is

log Y=8,+ 8 log X +¢ (1)
where
B = the regression intercept estimated by by
8, = the regression slope estimated by &,
¢ = the random error term.

Let ¢; represent the error term associated with the
ith data pair (X;, Y;). Then the mean expected
value of ¢ for any data pair, E(g) is zero with a
variance of o?. Variances of the error terms asso-
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ciated with all pairs of data are assumed to be equal,
that is, ¢f = 2.

Regression models using logarithmic transforms
of variables are usually back-transformed to the fol-

lowing power model:
Y= b{)aXb] (2)

where by, = the antilog of b;.

For predictive purposes, Equation 2 is incom-
plete, as the transform of the error term has been
omitted. This oversight is understandable as the
error term does not appear to be incorporated when
making similar predictions with least-squares, linear
regression models involving untransformed vari-
ables. But, as mentioned previously, the mean of the
€, terms is zero in such a model. In the regression
employing transformed variables, the ¢ values
have a mean of zero in logarithmic units but not in
the original arithmetic units. Because the mean will
not be zero after back-transformation, the error term
must be retained during the back-transformation:

Y == b, X 10° (3

Unless there is no error (10° = 1), values of ¥ pre-
dicted from the back-transformed model (Eqn. 2)
will be biased by the quantity 10,

Exponential relationships

The exponential relationship can be written in
terms similar to those used for the power relation-
ship above.

logY=bho+ b X +e (4)

Similar to the discussion associated with the presen-
tation of Equation 3 for power relationships, un-
biased estimates for exponential relationships can
be obtained with the following equation:

Y = by, 105 10° )

If the natural logarithms were used then the rela-
tionship would be the following:

Y = bge® et (6)

BIAS CORRECTION

Estimation of 10° (or e¢)} is all that is required
to account for the bias in predictions from power
(Eqn. 3) or exponential (Egns. 5 or 6} relationships
fit by the process described above, Two approaches
are applicable [1,3-6]. If the regression residuals
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were normally distributed then the following esti-
mate could be used (the base in Eqn. 7 would be ¢
if the natural logarithms were used):

10¢ = 10MSE/2 (7)

where MSE = the mean square of the error from
the regression.

D=
o
-t

i=1

MSE= —— 8
N2 (8)
where
el = regression residual from the ith data pair
squared

N = the total number of pairs.

If the residuals were not normally distributed, then
the “smearing estimate of bias” [8] would be rec-
ommended to determine the prediction bias (if the
natural logarithm were used then the base in Eqn. 9
would become e, not 10):

N
3104
10° = :‘T (9)

where ¢; = the ith regression residual.

Regardless of the normality of residuals or the
type of relationship, a relatively straightforward
estimation of bias is obtained. Predicted values are
then obtained from Equations 3 or 5 by using esti-
mates of 10¢ from Equation 7 or 9.

PERVASIVENESS OF TRANSFORMATION BIAS

The potential for transformation bias is high in
environmental chemistry and toxicology, Table 1
presents selected publications using log-log or iog-
arithmetic transformations. It is important to note
that the intentions in many of the cited publications
were to provide data description, not prediction.
The publications were selected to demonstrate the
pervasiveness of power and exponential relation-
ships in environmental sciences, not the correctness
of the cited work.

Regardless of the original intent, many power
and exponential relationships derived by linear re-
gression on transformed variables are eventually
employed for predictive purposes. If insufficient
information to estimate the bias were present in the
original publication, the possibility of inaccurate
prediction would be increased and the seriousness



)

Prediction bias 1131

Table 1. Selected examples from the literature illustrating the pervasive use of log-log and log-arithmetic
transformations to describe power and exponential relationships, respectively

Relationship Y X Ref.
Power
Water quality Conductivity Average daily stream flow (1]
Ionic proportions
Sediment load
Bioaccumulation Metal body burden Animal wt. [6,13,14]
Zinc in gills Fish wt. [15]
Radiocesium conen. Oxygen consumption [16]
Strontium BCF* Calcium conen. 7

BCF Octanol/water partition [11,18,19]
coefficient (K,,)
Hydrophobic chemical elimination K, [20]
Zinc elimination and uptake Animal wt. [21]
Food consumption rate Animal wt, [22}
Copper accumulation rate Seawater copper concn. [23]
Trophic transfer Radiocesium in consumer Radiocesium in food [24]
Cadmium or copper in consumer Cadmium or copper in food 25]
Metabolism Liver microsomal monooxygenase Animal wt. [2]
activity
Sublethal effect Larval protein content RNA/DNA upon toxicant [26]
exposure
Toxicity LC50 Liver microsomal 21
MONOOXYgenase activity
LC50 of water-column species LC50 of benthic species 27
IC50 of bacteria IC50 of standard species [28]
Total residual chlorine Duration of survival [29]
Methoxychlor LC50 Exposure duration [30]
LC50 or LD30 Animal wt, [31]
LC50 of metals Water hardness [32]
Exponential
Water quality [onic proportion Average daily stream flow [1}
Elimination Proportion of radionuclide Clearance time [33,34)
retained
General exponential clearance Clearance time [35,36]
Toxicity LC50 of free copper pH [37]
LC50 of pentachlorophenol Reciprocal of time [38]
LC50 of di-, triorganotin Hansch = parameter [39]
Median resistance time Oxygen concn. [40}
Median survival time during zinc Temperature [41]

exposure

*Bioconcentration factor.

of the bias would remain undefined. If the bias were
small, it might still have serious consequences in
modeling efforts employing iterative methods. The
small bias may be compounded such that the pre-
dicted outcome becomes worse as the simulation
progresses.

SELECTED EXAMPLES

Influence of hardness on foxic impact

Prediction bias in back-transformed models
from linear regressions of log toxicity vs. log hard-

ness data may be significant. Newman [3] used data
from U.S. and Canadian water-quality-criteria doc-
uments relating copper, cadmium, and zinc toxic-
ity to water hardness to demonstrate this point.
The bias in the selected cases ranged from 2% to
an extreme of 57%. The biased prediction was as
much as 57% higher than an unbiased estimate of
the effect concentration,

Elimination rate constant estimation

Cutshall [9] measured 65211 elimination from
oysters taken from below a nuclear facility. Data
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visually extracted from Figure 1a of his paper were
used to demonstrate predictive bias in routine elim-
ination kinetics techniques. Time and the natural
logarithm of the %°Zn activity were used as the in-
dependent and dependent variables, respectively, in
linear regression,

The antilog of the Y intercept of such a model
is routinely interpreted as predicting the concen-
tration {or amount) of material in the organism at
time = 0. (In multiexponential compartment mod-
els, antilogs of several predicted Y intercepts may
be used to estimate additional parameters [10].)
However, such predictions are biased for reasons
described above. In this example, the extracted data
had an MSE of 0.125. Regression residuals ap-
peared to be normally distributed. The bias was es-
timated to be ¢°1%/% or 1.06, approximately 6%.

Bioconcentration factor prediction

Table 4 of Neely et al. [11] lists data pairs of bio-
concentration factors (BCFs) and octanol/water
partition coefficients (K,.,) for eight organic chem-
icals. Linear regression resulted in the model, log
BCF = 0.542 log K, + 0.124. The MSE for the re-
gression was 0.1173. If this model were back-trans-
formed for predictive purposes, the bias would have
been estimated to be 10%!'732 or 1.14, BCFs pre-
dicted from the back-transformed model would
have been biased by 14%.

CONCLUSION

A predictive bias is associated with back-trans-
formed power and exponential models derived
using least-squares, linear regression of log-trans-
formed data. The bias is easily estimated using
Equations 7 or 9 and, consequently, should be cor-
rected. Bias estimation should be made regardless
of the original intent of the workers generating such
relationships. Alternatively, sufficient information
should be presented so that an estimation can be
made by future users.

A statement concerning the normality of the re-
gression residuals should also be included. As dis-
cussed in Newman and Heagler [6], the assumption
of residual normality can be examined with the Kol-
mogorov D statistic or Shapiro-Wilk W statistic as
implemented in the SAS® statistical package [12].
The MSE is sufficient if the regression residuals are
normally distributed. The ¥¢? and number of data
pairs are needed if the residuals are not normally
distributed.
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