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Abstract—Both relative toxicity and interactions between paired metal ions were predicted with least-squares linear regression and
various ion characteristics. Microtoxt 15 min EC50s (expressed as free ion) for Ca(II), Cd(II), Cu(II), Hg(II), Mg(II), Mn(II), Ni(II),
Pb(II), and Zn(II) were most effectively modeled with the constant for the first hydrolysis (KH for Mn1 1 H2O → MOHn21 1 H1)
although other ion characteristics were also significant in regression models. The zlog KH z is correlated with metal ion affinity to
intermediate ligands such as many biochemical functional groups with O donor atoms. Further, ordination of metals according to ion
characteristics, e.g., zlog KHz, facilitated prediction of paired metal interactions. Pairing metals with strong tendencies to complex with
intermediate or soft ligands such as those with O or S donor atoms resulted in strong interactions.
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INTRODUCTION

Quantitative structure–activity relationships (QSARs) allow
prediction of organic toxicant and drug bioactivity. These re-
lationships, first developed in pharmacology, are often based on
surrogate or indirect measures of molecular qualities such as
lipophilicity using Kow, electrical qualities using Hammett con-
stants, or topology using the molecular connectivity index. Most
QSARs used by the Office of Toxic Substances were based on
the surrogate measure, Kow (Table 7.1 in Suter [1]). Measures
used for QSARs can also involve more fundamental or primary
characteristics, e.g., electrical qualities using ionization poten-
tials or steric qualities using total molecular surface area. Quan-
titative structure–activity relationships based on such qualities
provide a richer understanding of underlying processes than
those using surrogate measures and, consequently, can be more
effective for prediction beyond the particular compounds used
to develop the QSAR.

Although seldom done, characteristics of inorganic species
can similarly be used for predicting intermetal trends in bio-
activity [2–9]. Like QSARs for organic compounds, properties
of metal ions useful for predicting toxicity include both sur-
rogate and more direct measures of toxicant qualities. For ex-
ample, Biesinger and Christensen [3] correlated effects on
aquatic biota with metal sulfide solubility, a surrogate measure
thought to reflect metal tendency to combine with sulfhydryl
groups of biomolecules. Based on hard and soft acid and base
(HSAB) theory, Jones and Vaughn [4] and Williams and Turner
[7] correlated toxic effects to mice with the softness parameter,
sp ([coordinate bond energy of the metal fluoride 2 coordinate
bond energy of the metal iodide]/coordinate bond energy of the
metal fluoride). Metal hydroxide solubility product (log 2Kso

MOH), notionally reflecting metal affinity to O-containing
groups, was also correlated with inhibition of algal growth [8].
Similarly, the log of the constant for the first hydrolysis (KH for
Mn1 1 H2O → MOHn21 1 H1) could be used as it also is
correlated with metal ion affinity to intermediate ligands like
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those with O donor atoms. (The log of KH will increase linearly
with the ion charge divided by the M–OH distance [10].)

Also found useful was the bivariate characterization of
metal–ligand complexation outlined by Turner et al. [11]. In
this scheme, Db (log of the stability constant for the metal
fluoride 2 log of the stability constant for the metal chloride)
and Z2/r (Z 5 ion charge, r 5 ionic radius) were surrogate
measures of covalent and ionic bond stabilities for metal–ligand
complexes. The tendency to form covalent bonds with groups
possessing an S donor atom (soft ligands) decreased with Db.
The polarizing power, Z2/r, was a measure of the electrostatic
interaction strength between a metal ion and ligand. If these
two variables were used as axes to produce a complexation field
diagram of cations, stability of metal–intermediate ligand com-
plexes (e.g., ligands with an O donor atom) would increase along
a line extending diagonally between the two axes [11–13].

Kaiser [6] generated an effective model from fundamental
ion characteristics by combining AN/DIP and DE0 where AN 5
atomic number, DIP 5 difference in ionization potentials be-
tween ion oxidation number OX and OX 2 1, and DE0 5 the
absolute difference in electrochemical potential between the ion
and its first stable reduced state. The atomic number (AN) re-
flected the size or inertia of the ion. The DIP and DE0 parameters
reflected the effects of atomic ionization potential and the ability
of the ion to change its electronic state, respectively. These
parameters were used successfully to develop models of effect
for three metal groupings based on electron configuration. Nie-
boer and Richardson [5] developed another set of variables for
prediction of bioactivity based on fundamental ion character-
istics ( r and Z2/r). Again, Z2/r reflected the energy of an ion2Xm

when interacting electrostatically with a ligand. The r (Xm 52Xm

electronegativity and r 5 the Pauling ionic radius) quantified
the importance of covalent interactions in the metal–ligand com-
plexation relative to ionic interactions. (Electronegativity is cor-
related with the energy of an empty valence orbital and reflects
the ability of the metal to accept electrons. Combining electro-
negativity with the Pauling ionic radius yields an index that
quantifies the importance of covalent interactions relative to
ionic interactions [5].)
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Table 1.Metal ion characteristics used in regression modelsa

Metal
ion

Ion electron
configuration

Outer
shell
elec-
trons AN r (Å)

DIP
(eV)

DE0

(V) Db Xm zlog KHz

Log
2KSO

MOH X r2
m Z2/r

AN

DIP sp

Mg21

Ca21

{He}2s22p6 or {Ne}
{Ne}3s23p6 or {Ar}

8b

8b
12
20

0.72
1.00

7.39
5.76

2.38
2.76

5.76
4.80

1.31
1.00

11.61
12.72

10.50
5.00

1.236
1.000

5.56
4.00

1.62
3.47

0.167
0.181

Mn21

Ni21

Cu21

Zn21

Cd21

Hg21

Pb21

{Ar}3d5

{Ar}3d8

{Ar}3d9

{Ar}3d10

{Kr}4d10

{Xe}4f145d10

{Xe}6s24f145d10

5
8
9

10
10
10
10

25
28
29
30
48
80
82

0.67
0.69
0.73
0.74
0.95
1.02
1.18

8.21
10.52
12.57

8.57
7.91
8.32
7.61

1.03
0.23
0.16
0.76
0.40
0.91
0.13

0.66
0.50
1.12
0.66

20.89
25.80

0.48

1.55
1.91
1.90
1.65
1.69
2.00
2.33

10.59
9.86
8.00
8.96

10.08
3.40
7.71

12.70
16.00
19.80
16.50
14.00
25.50
18.70

1.994
2.517
2.635
2.015
2.713
4.080
6.406

5.97
5.79
5.48
5.40
4.21
3.92
3.39

3.04
2.66
2.31
3.50
6.07
9.62

10.78

0.125
0.126
0.104
0.115
0.081
0.065
0.131

a See Materials and Methods section for data sources.
b Noble gas configuration.

In the present study, we assumed that the difference in ap-
plication of predictive modeling for organic compound and met-
al ion bioactivity rests on two factors. First, the QSAR approach
for organic compounds was incorporated into ecotoxicology
rapidly because it had already demonstrated its worth in phar-
macology. No similar body of knowledge existed for metal ions.
Second, prediction is complicated by metal speciation because
several potentially bioavailable forms can be present simulta-
neously. Some of the ambiguity associated with metal speciation
can be reduced with speciation models based on thermodynamic
equilibrium and the simplifying assumption that bioactivity is
generally correlated with the free ion concentration. Therefore,
organic compounds may have no inherent advantage over metal
ions relative to developing predictive models of bioactivity. We
hypothesized that both relative metal ion toxicity and interac-
tions between paired metal ions could be predicted using least-
squares linear regression and various ion characteristics. Spe-
cifically, we tested the value of surrogate and more direct mea-
sures of ion characteristics for prediction of toxicity using a
simple and widely accepted microbial assay, Microtoxt. Nine
metal ions differing in electronic configurations were selected
(Table 1). They included two class A metals (Mg21 and Ca21)
[14] with hard spheres and electron configurations of noble
gases. The covalent interactions of these cations with ligands
were generally much weaker than those of the other seven met-
als. The remaining seven ranged from borderline to class B
metals with different tendencies for covalent interaction with
hard ligands. Both the Db and r parameters in Table 1 reflect2Xm

this increasing tendency toward covalent bonding with ligands
such as those with S donor atoms [11,12].

MATERIALS AND METHODS

Microtox toxicity assay

The Microtox assay was used to determine 15-min EC50
values for the nine metals (chloride salts) listed in Table 1. A
reconstituted marine bacterium (Vibrio fischeri Beijerinck 1889,
formerly Photobacterium phosphoreum) was exposed at 158C
to osmotically adjusted (2% NaCl [w/v]) solutions of metals.
Bioluminescence, quantified over a range of metal concentra-
tions with the Microtox model 500 toxicity analyzer (Microbics
Corp., Carlsbad, CA, USA) was used to calculate the concen-
tration resulting in a 50% decrease in light output after 15 min
of exposure.

Final EC50 values were expressed in terms of specific metal
species concentrations. Concentrations of species, including
those of the free (aquated) ion, were predicted with PC MIN-

TEQA2 version 3.10 [15]. The concentrations of Na (342.3 mM/
L), Cl (342.3 mM/L), pH (5.51), and total alkalinity (22.98 meq/
L) of the osmotically adjusted medium plus the dissolved metal
and Cl from the added metal salt were used in speciation cal-
culations. Assumptions of a fixed pH, closed system, and no
precipitation of solid phases were made during computations.

Ion characteristics

Ion characteristics were obtained from a variety of sources
and are summarized in Table 1. Ionic radii were taken from
Shannon and Prewitt [16,17] using ‘‘IR’’ values and the CRC
Handbook of Chemistry [18]. The DIP values were calculated
from ionization potentials in the CRC Handbook of Chemistry
[18]. Those for DE0 came from Kaiser [6] and were checked
against more current tables of electrochemical series [18]. Most
Db values were calculated with stability constants from Smith
and Martell [19]. Those for the weak and consequently difficult
to quantify complexes came from Lindsay [20]. Average elec-
tronegativity values (Xm) were from Allred [21]. The first hy-
drolysis constants, expressed in Table 1 as the absolute value
of the log of KH (zlog KHz), were taken from Baes and Mesmer
[10], Turner et al. [11], and Brown and Allison [15]. Values for
the metal hydroxide solubility (log 2KSO MOH) came directly
from Fisher [8] and those of the softness parameter (sp) were
extracted from Pearson and Mawby [22].

Covalent ( r) and ionic (Z2/r) indices [5] were estimated2Xm

from the parameters in Table 1. The covalent index reflected
the ‘‘importance of covalent interactions relative to ionic in-
teractions’’ or, more succinctly, ‘‘the electron attracting capa-
bility of an atom in a molecule’’ [5]. The ionic index ‘‘correlates
successfully with interactions that are known to be highly ionic
such as the hydration of cations . . .’’ [5]. The combined use of
AN/DIP and DE0 incorporated ion inertia or size (AN), atomic
ionization potential (DIP), and electronic configuration (DE0)
during model development [6].

Relative metal toxicities

Initially, both total and estimated free metal ion concentrations
(Ca21, Cd21, Cu21, Hg21, Mg21, Mn21, Ni21, Pb21, and Zn21 in mM/
L) were used in model development. Models including free metal
ion plus neutral chloro complexes were also examined because
Simkiss and coworkers [23,24] suggested that chloro complexes
may be more bioactive in marine systems than previously sus-
pected. For example, the concentration was considered in0Hg(Cl)2

addition to that of Hg21 because may be bioavailable due0Hg(Cl)2

to its lipophilicity [23,24], and it has an estimated membrane pen-
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Table 2.Unspeciated concentrations (mM/L) of metals used in inter-metal interaction experiment

Metal

Interacting metal

Ca Cd Hg Mg Mn Ni Pb Zn

Cu
1.57
2.36
3.15
4.72
6.30
9.44

49,900
(100/83)

99,800
(100/79)
149,700

(100/74)
199,600

(100/70)

89.0
(6/86)
177.9
(6/86)
266.9
(6/86)
355.8
(6/86)

0.095
(,0.1/86)

0.189
(,0.1/86)

0.284
(,0.1/86)

0.374
(,0.1/86)

20,600
(100/84)
41,120
(100/83)
61,680
(100/82)
82,240
(100/80)

455.0
(72/86)

910.1
(72/86)
1,365
(72/86)
1,820
(72/86)

85.2
(73/86)
170.3

(73/86)
255.5

(73/86)
340.7

(73/86)

1.21
(20/86)

2.41
(20/86)

3.62
(20/86)

4.83
(20/86)

15.3
(83/86)

30.6
(83/86)

45.9
(83/86)

61.2
(83/86)

Mg
41.1
61.7
82.2

123.4
164.5
246.7

49,900
(100/100)

99,800
(100/100)
149,700

(100/100)
199,600

(100/100)

0.89
(3/100)

1.78
(3/100)

2.67
(3/100)

3.56
(3/100)

0.189
(,0.1/100)

0.374
(,0.1/100)

0.563
(,0.1/100)

0.748
(,0.1/100)

1.82
(58/100)

3.64
(58/100)

5.46
(58/100)

7.28
(58/100)

1.70
(56/100)

3.41
(56/100)

5.11
(56/100)

6.81
(55/100)

1.21
(10/100)

2.41
(10/100)

3.62
(10/100)

4.83
(10/100)

76.5
(69/100)
152.9

(69/100)
229.4

(69/100)
305.9

(69/100)

Average MINTEQ-predicted percentages of the total concentrations of metal present as free ions for the paired metals are indicated in parentheses
(e.g., % competing metal ion/% Cu21 or % interacting metal ion/% Mg21).

etration rate 106 times faster than charged Hg complexes [24].
Further, estimated Hg21 concentrations were more than 105 times
lower than concentrations in the saline exposure solution.0Hg(Cl)2

However, for this paper, models including neutral chloro complexes
were abandoned after they demonstrated no clear superiority to the
total or free ion-based models.

Regression models of 15-min EC50 values versus candidate
ion characteristics were generated with PROC GLM of the SAS
package [25]. Models involving only one independent variable used
DE0, r, Db, log 2Kso MOH, zlog KHz, or sp. Models with two2Xm

independent variables included (AN/DIP, DE0), (log[AN/DIP], DE0),
( r, Z2/r), or (Db, Z2/r), and were consistent with the work de-2Xm

scribed in the Introduction. Both (AN/DIP, DE0) and (log[AN/DIP],
DE0) were used because, contrary to the original study of Kaiser
[6], there was no apparent advantage to using the log transformation
of AN/DIP during our model development.

Model selection was based on the principle of parsimony: mod-
els with lowest dimensionality were favored. The principle of par-
simony was formally applied to model selection by minimum Akai-
ke’s information criterion estimation (MAICE). Akaike’s infor-
mation criterion (AIC) was calculated for each model using the
estimated log likelihood (log L). The AIC quantifies the fit of the
model to the data after adjusting the log L for any differences in
model complexity, i.e., different numbers of model parameters. If
two models with identical fits but different numbers of estimated
parameters were compared with MAICE, the model with the lowest
number of parameters would be favored. Neter et al. [26] and
Newman [27] provide the following formulae for the log likelihood
function and AIC, respectively.

nn n 1
2 2log L 5 2 log 2p 2 log s 2 (Y 2 b 2b X )Oe e i 0 1 1i22 2 2s i51

AIC 5 22(log L) 1 2P

where

n 5 the number of observations,
s2 5 the model variance (estimated by the model mean

square error, MSE),
Yi 5 the ith Y value,

x1i 5 the ith x1 value,
b0 5 the estimated intercept,
b1 5 the estimated slope, and
P 5 number of parameters estimated in the model.

If two independent variables (x1, x2) were used, an additional
term, 2b2X2i, was added to the squared term at the end of the
above equation to estimate the log likelihood. The squared term
is the square of the difference in the observed and predicted
values from the model. The model with the smallest AIC was
judged to have the most information.

Metal interactions

We assumed that metal ion interactions result primarily from
competition for ligand groups on biomolecules. This simplifying
assumption has been applied successfully in previous modeling
efforts [3,8,28–32]. Metal pairs were added simultaneously to
the bacterial suspension to determine the interaction between
metals on bacterial bioluminescence. Metals were paired based
on the rankings of contrasting characteristics defined above for
the nine metal ions. Combined metal concentrations producing
significant but incomplete inhibition were used. Copper was
paired with Ca, Cd, Hg, Mg, Mn, Ni, Pb, and Zn, and Mg was
paired with Ca, Cd, Hg, Mn, Ni, Pb, and Zn (Table 2). In this
manner, the metals were matched with two metals displaying
contrasting interactions with ligands (i.e., Cu with primarily
covalent interactions with affinities for donor atoms of S . N
. O, and Mg with primarily electrostatic interactions and rel-
ative affinities of O . N . S [5,8]).

The bioluminescence of V. fischeri was measured at 1-min
intervals for a period of 5 min using all Cu- and Mg-metal pairs.
Each metal pair was assayed three or four times. After prelim-
inary trials indicated apparent first-order kinetics for inactiva-
tion, data were analyzed by fitting the natural log of light output
against time. The absolute values of the slopes of these lines,
as determined using least-squares linear regression, were esti-
mates of the first-order rate constant (K) for inactivation. The
exposure concentration of Cu or Mg was then plotted against
the probit of K to produce four lines, one for each concentration
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Table 3.Total EC50s, free ion-based EC50s, and free plus neutral chloro complex-based EC50s (mean 6 SD)
in mM/L for nine metals (added as chloride salts) using Microtoxt

Metal n Total EC50
Proportion
free iona

Free ion-based
EC50

Proportion
free 1
neutral
chloro

complexesa

Free ion 1 neutral
chloro complexes

EC50

Ca
Cd
Cu
Hg
Mg
Mn
Ni
Pb
Zn

3
4
3
3
3
3
3
3
4

226,508 6 23,069
195.6 6 18.8

2.78 6 0.52
0.4574 6 0.0345

209,301 6 2,844
1,352 6 62
336.6 6 67.6

0.8555 6 0.0200
18.28 6 2.15

1.0
0.061
0.858
1.07E212
1.0
0.717
0.729
0.197
0.834

226,508 6 23,069
11.94 6 1.15

2.39 6 0.44
4.89E213 6 3.69E214

209,301 6 2,844
969.4 6 44.7
245.4 6 49.3

0.1685 6 0.0039
15.24 6 1.79

1.0
0.408
0.868
0.107
1.0
0.729
0.831
0.375
0.856

226,508 6 23,069
79.81 6 7.71

2.41 6 0.45
0.0494 6 0.0037

209,301 6 2,844
985.6 6 45.3
279.7 6 56.2

0.3208 6 0.0075
15.65 6 1.84

a Estimated using MINTEQA2 version 3.10.

Table 4.Results from the regression of total log EC50 and several ion characteristicsa

Log EC50 5 f(x) r2 Model (log EC505) MSE AIC

DE0
b

X rb2
m

Dbb

log 2KSOMOHb

zlog KHzb

0.67
0.61
0.63
0.86
0.78

0.46 1 1.80(DE0)
4.96 2 1.01(X r)2

m

1.80 1 0.51(Db)
7.39 2 0.336(log 2 KSOMOH)

24.17 1 0.69(zlog KHz)

1.304
1.429
1.377
0.861
1.074

32.06
33.74
33.06
25.37
28.68

Softness index (sp)b

AN/DIP, DE0
b

log AN/DIP, DE0
b

X rb, Z2/r2
m

Db*, Z2/r

0.61
0.82
0.80
0.65
0.64

23.24 1 44.85(sp)
2.02 2 0.26(AN/DIP) 1 1.48(DE0)
2.51 2 2.91(log AN/DIP) 1 1.48(DE0)
8.46 2 1.22(X r) 2 0.60(Z2/r)2

m

1.09 1 0.50(Db) 1 0.15(Z2/r)

1.428
1.055
1.108
1.448
1.480

33.74
29.34
30.12
34.56
34.95

a Those models with the smallest Akaike’s information criterion (AIC) were judged to have the most
information regardless of the number of independent variables.
b Variable had a significant effect on log EC50 (a 5 0.05).

of the potentially interacting metal (Interacting metal, Table 2).
Probit transformations of rate constants allowed linearization of
the sigmoidal curve of exposure concentration versus K. The
probit metameter was used assuming the sigmoidal curve could
be described as a cumulative normal distribution. Additional
attempts to linearize these data with two metameters (logistic
and Weibull transformations) frequently used to analyze dose–
response data did not improve fit.

RESULTS

Relative metal toxicities

The exposure concentrations were expressed as either total
metal, free ion, or free ion plus neutral chloro complex con-
centrations during initial model development. The predicted free
ion concentrations were examined under the assumption that
these concentrations more accurately reflected bioreactive con-
centrations than total metal concentrations. As discussed in the
Introduction, the neutral chloro complexes were also considered
based on their lipophilicity [23,24]. The 15-min EC50 values
(6standard deviation) expressed in these three concentration
metameters are provided in Table 3.

If models were fit using total dissolved metal concentrations,
all variables except Z2/r and AN/DIP were statistically signifi-
cant (a 5 0.05) in the regression models (Table 4). Although
several (e.g., those based on log 2KSOOH or zlog KHz) provided
adequate fit, use of calculated free ion concentrations (Table 5)
provided the best fitting model. That using free ion concentra-
tion and zlog KHz had a high r2 of 0.93 and the lowest AIC (Fig.

1). (Because AIC depends on the magnitude of the concentration
metameter in the models, it cannot be used to compare relative
fit of models based on total versus free ion concentrations.)
Those using Db also provided adequate fit. Using MAICE, the
best fitting, two-independent variable model (r2 5 0.85, AIC 5
44.64) was log EC50 (free ion) 5 f(Db, Z2/r). But Db alone
accounted for 82% of the variation in EC50 values indicating
that Z2/r contributed little to the model fit.

Metal interactions

When Cu was paired with the other eight metals, interactions
conformed to expectations based on ligand-binding tendencies
alone. The zlog KHz values for the various metals were used here
to reflect relevant differences in ligand-binding tendencies al-
though, as indicated above, other variables such as Db could
also have been used for this purpose. Nonparallel (intersecting)
lines of metal concentration versus probit of K at different com-
peting metal concentrations were produced after combining met-
al ions with similar zlog KHz values (e.g., Cu21 and Pb21 in Fig.
2A), indicating metal interaction. In contrast, when metal pairs
with dissimilar zlog KHz values were combined (e.g., Cu21 and
Mg21), the resulting lines of Cu21 concentration versus probit
of K at different Mg21 concentrations tended to be parallel,
indicating little interaction between metals (Fig. 2B).

All metals paired with Cu (Ca, Cd, Hg, Mn, Ni, Pb, or Zn)
except Mg produced intersecting lines. The point of intersection
was approximated visually and the mean point of intersection
from three to four replicates was calculated for each pair. There
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Table 5.Results from the regression of free ion-based log EC50 and several ion characteristicsa

Log EC50 5 f(x) r2 Model (log EC505) MSE AIC

DE0

X r2
m

Dbb

log 2 KSOMOHb

zlog KHzb

0.15
0.34
0.82
0.75
0.93

21.42 1 2.10(DE0)
5.71 2 1.86(X r)2

m

20.55 1 1.44(Db)
12.59 2 0.78(log 2KSOMOH)

216.65 1 1.87(zlog KHz)

5.206
4.595
2.403
2.845
1.534

71.83
66.44
45.26
49.87
35.13

Softness index (sp)b

AN/DIP, DE0

log AN/DIP, DE0

X r, Z2/r2
m

Dbb, Z2/r

0.60
0.52
0.49
0.35
0.85

212.87 1 110.9(sp)
4.79 2 1.04(AN/DIP) 1 0.83(DE0)
7.03 2 11.99(log AN/DIP) 1 0.78(DE0)
1.70 2 1.62(X r) 1 0.690(Z2/r)2

m

25.22 1 1.36(Db) 1 0.98(Z2/r)

3.554
4.214
4.338
4.926
2.381

56.84
60.77
61.78
66.42
44.64

a Those models with the smallest Akaike’s information criterion (AIC) were judged to have the most
information regardless of the number of independent variables.
b Variable had a significant effect on log EC50 (a 5 0.05).

Fig. 2. Probit of first order rate constants (K) versus metal ion con-
centrations at four different concentrations of potentially competing
metal ions. Strong interactions were noted between Cu21 and Pb21

(intersecting lines in A) but no apparent interactions (parallel lines)
were noted for the Cu21 and Mg21 (B) and Ca21 and Mg21 (C) metal
ion pairs. Respectively, the symbols V, m, M, and l designate Pb21

concentrations in A of 0.238, 0.475, 0.713, and 0.951 mM/L, Mg21

concentrations in B of 20.6, 41.1, 61.7, and 82.2 mM/L, and Ca21

concentrations in C of 49.9, 99.8, 149.7, and 199.6 mM/L.Fig. 1. The model for log EC50 (free ion) and zlog KHz for nine metals.

was a clear positive relationship if zlog KHz values were plotted
against these mean points of intersection. There was a general
increase in the point of intersection (Fig. 3) as zlog KHz increased,
suggesting diminishing interactions between paired metal ions.

Strong metal interactions were not predicted for Mg with
other metals based on the very weak metal–ligand covalent
interactions for Mg. Indeed, if the metal pairs with the most
similar but high values of zlog KHz (Mg and Ca) were combined,
the lines of Mg21 concentration versus probit K at different Ca21

concentrations were parallel, suggesting little interaction be-
tween metals (Fig. 2C). For Mg paired with other metals (Cd,
Hg, Mn, Ni, Pb, or Zn), the lines of Mg21 concentration versus
probit K generated for the different competing ion concentra-
tions were also parallel.

DISCUSSION

Relative toxicities of metal ions were predictable with linear
regression using several measures of ion characteristics. The
best model involved zlog KHz, and accounted for 93% of the
variation in EC50 values (free ion) for the nine metals. This
implied that the differences in ion affinities for intermediate
ligands such as many biochemical functional groups with O
donor atoms strongly influenced bioactivity of the nine metals.
The lack of significance for Z2/r was expected as the tested
divalent metal ions had relatively similar Z2/r values. It is im-
portant to remember that the precision of values for the ion
characteristics vary and likely contributed to the relative value
of each in fitting the toxicity data also.

Data sets from the literature were fit using these same pro-
cedures and good models resulted even without speciation es-
timation. For growth inhibition of marine algae by Ca(II),
Mg(II), Mn(II), Zn(II), Cd(II), Cu(II), Pb(II), and Hg(II) [8],
the best model included zlog KHz (r2 5 0.87), log 2Kso MOH
(r2 5 0.91), or both r and Z2/r (r2 5 0.87). Daphnia magna2Xm

reproductive impairment (3 week EC16) [6] was modeled with
AN/DIP and DE0 values for 17 metals (Ca(II), Mg(II), Mn(II),
Ni(II), Zn(II), Cd(II), Cu(II), Pb(II), Hg(II), Na(I), K(I), Sr(II),
Ba(II), Fe(III), Al(III), Sn(II), and Co(II)) and accounted for
76% of the variation among EC16 values. Similarly, 48 h LC50
of D. magna [6] for Ca(II), Mg(II), Mn(II), Ni(II), Zn(II), Cd(II),
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Fig. 3. The degree of metal interaction, measured as the point of
intersection in Cu21 versus probit of K plots, for nine metals ranked
by zlog KHz. A similar ranking for metals paired with Mg21 showed
no such trend.

Cu(II), Hg(II), Na(I), K(I), Sr(II), Ba(II), Al(III), and Co(II)
were effectively modeled with these two parameters (r2 5 0.86).
The r2 values for the reproductive impairment and acute toxic
effect data were 0.67 and 0.82, respectively, if r alone was2Xm

used to generate the regression models. Kaiser [6], using log
AN/DIP instead of AN/DIP, obtained much higher correlation
coefficients for these last two data sets by developing separate
models for metals with noble gas electron configurations, those
with partially or completely filled d orbitals, and those with
filled s and d orbitals but incomplete p orbitals. It is our intention
to expand the present range of metals so that separate models
can be assessed for subsets of metal ions with similar electron
configurations.

The reader should note that applying these models for pre-
diction of lethal effect may require correction of a backtrans-
formation bias [33] regardless of the final model selected. This
bias arises from the use of the log of effect, e.g., log EC50 or
log LC50. The mean predicted log of effect (e.g., log EC50)
from the original regression model (log Y 5 b0 1 b1X 1 e where
e is the model error term) is unbiased, but the predicted value
of the effect (e.g., EC50) from the backtransformed linear model
(Y 5 10b010b1X) is no longer an unbiased prediction of mean
response because the term 10e is not included in the backtrans-
formed model. The factor, 10ln 10(MSE/2) can be used to correct for
this bias if, as is the case with the models described herein, the
residuals appear to be normally distributed. The required MSE
values are provided in Tables 4 and 5 for this purpose.

Based on methods for assessing competitive inhibition of
enzymes [34] and the conceptual model of Voyer and Heltshe
[35], the methods described here allowed visualization and
semiquantitative ranking of paired metal interactions. This tech-
nique for metal ions has several advantages. First, standard
methods for assessing interactions rely on descriptive statistical
[35] or mathematical [36–41] models with no direct linkage to
mechanisms of toxic action. Their present use is based on the
assumption that each toxicant acts nonspecifically as a Selyean
stressor because this satisfies the requirement of similarity of
mechanism for effect [36,42]. This convenient assumption is
often inappropriate. Further, there are also clear indications that
resulting additive, synergistic, or antagonistic combinations may
be influenced by exposure concentrations in addition to the par-
ticular pair of toxicants [42,43]. As can be seen from Figure

2A, concentrations combined near or very distant from the point
of intersection would have prompted very different conclusions
if the standard approach, i.e., one or few paired concentrations,
were used.

As predicted under the simplifying assumption that inter-
actions reflected competition for ligands of biomolecules, those
metals with only weak covalent binding showed little interaction
if combined. Any metal combined with Mg, a metal with only
weak covalent interactions with pertinent ligands, showed little
evidence of interaction. In contrast, pairing metals with strong
tendencies to complex with intermediate or soft ligands such
as those with O or S donor atoms resulted in strong interactions.
Consequently, the assumption that interactions reflected com-
petition for ligands of biomolecules was supported for this lim-
ited number of divalent metal ions. More work with a wider
range of metals including those with more divergent Z2/r values
is required. Refinement of the semiquantitative methods used
here is also essential during any extension of this approach.
Indeed, results shown here may only be pertinent to the range
of combined concentrations tested.

Regardless of the limitations of these data and their inter-
pretations, the hypotheses were supported that trends in relative
toxicities and metal ion interactions could be predicted from
ion characteristics reflecting differences in metal–ligand inter-
actions. Successful development of D. magna acute toxicity and
reproductive impairment models and an algal growth inhibition
model indicate the potential for this parsimonious conceptual
model being extended beyond this simple microbial assay.
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