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Introduction

Ecotoxicology is a relatively new science concerned with
contaminants in the biosphere and their effects on constitu-
ents of the biosphere, including humans. Although relevant
effects range from the molecular to the biospheric levels of
biological organization, most measures of effect generated
by ecotoxicologists are designed to infer adverse effect at
the level of the individual organism. This is a consequence
of core methods adoption from classic toxicology, a disci-
pline appropriately concerned with effects on individuals.
This has created a bias in the ecotoxicology literature that
can compromise inferences about effects at higher levels of
biological organization such as the population, ecological
community, or ecosystem levels. Despite this bias, the
methods described herein can and are used pragmatically
to infer effects including those occurring at higher levels.

Effect metrics are derived for different kinds of expo-
sures, most notably acute exposures to high concentrations
and chronic exposures to low concentrations. Acute expo-
sures are defined in various ways but all definitions reflect
a relatively brief and intense exposure scenario. By recent
convention, chronic exposures are defined as those
exceeding 10% of an individual’s life span. However, the
definition of chronic exposure varies in literature and
depends on the specific methodologies used to produce
an effect metric. As an example, some chronic toxicity tests
for aquatic species use an exposure duration of 28 days
regardless of the longevity of the test species.
Regression-Derived Effect Metrics

The two general approaches, regression-based and
hypothesis testing-based methods, to quantify adverse
effects were established early in the history of ecotoxicol-
ogy. Most regression-based methods are intended to
predict the intensity of effect associated with exposure
to a toxicant concentration for a specified duration
although regression models incorporating exposure con-
centration and duration simultaneously are becoming
increasingly more common. Hypothesis testing-based
methods were originally designed to generate some
measure of effect in situations in which a regression
model cannot be fit with sufficient goodness of fit.
However, they have gradually become the effect metrics
of choice for chronic exposures that commonly, but not
always, produce data less amenable to regression model-
ing than do acute exposure studies.

Regression-based metrics of effect are generated with
well-established test designs. The most widely applied
design includes a series of exposure concentrations or
doses. There are tests, notably effluent toxicity tests,
with slightly different treatments. In the case of an effluent
test, the effluent is mixed with different amounts of clean
water to generate a series of effluent dilutions. The diluent
water is either taken from the receiving water or standard
synthetic water is used. The treatment intensity is
expressed as (effluent volume)/(effluent volumeþ dilu-
tion water volume)� 100%. Regardless, subsets of test
individuals are either exposed to constant levels of toxi-
cant in their surrounding media or food, or given a
specific dose of toxicant, perhaps by injection, topical
application, or gavage. In the case of a lethal effect, the
number of individuals affected at each concentration or
dose treatment is tallied after a specified duration
(Figure 1). The data pairs (concentration, dose, or dilution
vs. intensity of effect) generated for the series of concen-
tration, dose, or dilution treatments are then fit to one of
several candidate models using conventional regression
methods. Most of the commonly applied models are sig-
moid functions that accommodate lowest and highest
possible limits for effect intensity (Figure 1). For lethal
effects, the lowest level might be zero or some baseline
level of natural (‘spontaneous’) mortality, and the upper
limit of effect is often 100% mortality for the exposed
group of individuals.

The most commonly fit sigmoid function is the log
normal (probit or normit) model although others such as
the log logistic (logit), Weibull (Weibit), or Gompertz
(Gompit) often provide excellent fit to these types of
data. The conventional probit and probit with sponta-
neous mortality are the following:

p ¼ � a þ b ln doseð Þð Þ ½1�

p ¼ S þ 1 – Sð Þ � a þ b ln doseð Þð Þð Þ ½2�
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Figure 1 (a) A typical experimental design used to generate

regression-based metrics of effect and (b) the associated

sigmoid dose–response curve . The organisms that died in
response to the treatment are denoted in black and those still

living are denoted in white.
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Figure 2 The probits of the predicted and observed
proportions vs. the natural log of the effluent dilution, and the

predicted 95% confidence intervals for the data from Table 1.

The LC50 is estimated by exponentiating the x values

corresponding to the probit for 50% mortality.
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where p¼ the probability of or proportion of exposed
individuals dying, S¼ the probability of or proportion of
unexposed individuals dying, �¼ normal cumulative
function, a¼ an estimated regression intercept, and b¼
estimated regression parameter accounting for the influ-
ence of ln dose on p. Spontaneous mortality may be
included in the model because laboratory culturing con-
ditions are such that some unavoidable mortality occurs or
because the longevity of the organism is short relative to
the length of the test, natural mortality is to be expected
during the test. In either case, the assumption is made that
the spontaneous mortality does not influence the relation-
ship between dose/concentration and associated mortality.
This may not be an acceptable assumption in some cases.

Such regression models were initially used by labora-
tory toxicologists to estimate threshold doses below which
no effect was expected. However, because the error asso-
ciated with such estimates was very large, doses predicted
to produce certain p’s eventually became the norm.
Because the prediction error tends to be lowest toward
the center of the predicted curve (Figure 2), prediction of
the concentration producing 50% effect (p¼ 0.50) became
the conventional effects metric in mammalian toxicology
and was adopted by early ecotoxicologists. Another advan-
tage of prediction for this proportion is that the effects
metrics derived by the most common functions (probit and
logit) produce very similar results at 0.50. The median
lethal dose (LD50) and median lethal concentration
(LC50) predicted after a specified duration of exposure
are currently the primary metrics of acute lethal effects.
For nonlethal effects fit by regression to concentration– or
dose–effect models, the median effective dose (ED50) or
concentration (EC50) are predicted instead. Despite this
convention of predicting median effect levels, a trend has
begun that draws the focus of effect assessments more and
more often toward lower levels of mortality or effect, that
is, LDx or LCx where x < 50. We anticipate that this trend
will continue, resulting in some changes to the methods
described below for predicting LDx and LCx values and
their confidence limits. As the emphasis in ecotoxicology
shifts downward on the dose/concentration–response
curve, more attention will be required in selection of the
best among the candidate sigmoid models. Effect metrics
are similar for the models at the center of the curve but
predictions from the most commonly applied models (e.g.,
probit, logit, or Weibull) diverge as one makes predictions
toward the tails of the distributions.

Predictions of LD50 or LC50 using data from dose/
concentration–effect experimental designs can be made
using a variety of means. The parametric methods shown
in Figure 3 are most often executed by maximum like-
lihood estimation (MLE) because it is common to have
0.00 and 1.00 proportions responding (i.e., all individuals
in a treatment survived or died) in the data set but the
sigmoid functions to which these data are applied never
reach 0.00 or 1.00. Which method is applied depends on
the data qualities. A model that incorporates spontaneous
or natural mortality might be adopted if such baseline
mortality is obvious in the data set. In many software
packages, the natural mortality can be either specified
by the modeler or estimated using various methods by
the software. The best sigmoid model fitting the data set
can be selected using a goodness-of-fit statistic such as a
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Figure 3 Methods for predicting LD50 or LC50 values using data from dose or concentration–effect experimental designs.

Table 1 Dose–response data of an acute toxicity test exposing

juvenile mysid shrimp to a simulated refinery effluent

Concentration
(% effluent) Replicate

Number
exposed

Number
dead

Control 1 10 0

2 10 0

10% 1 10 2

2 10 1

18% 1 10 3
2 10 3

25% 1 10 5
2 10 4

32% 1 10 9

2 10 7

56% 1 10 10

2 10 10

100% 1 10 10

2 10 10

Modified from table 2 of Buikema AL, Niederlehner BR, and Cairns J
(1982) Biological monitoring, Part IV-toxicity testing. Water Research 16:
239–262.
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�2 statistic. The advantage of these models is the ease
with which estimates and associated confidence intervals
can be generated for different p values. A nonparametric
approach can be applied instead if the data set does not fit
any model acceptably or if the iterative MLE method fails
to converge on an acceptable solution. The Spearman–
Karber technique with or without trimming of data from
the distribution tails is the most commonly applied tech-
nique in such a case to generate a LD50 or LC50 estimate
and the associated 95% confidence limits.

Data from a mysid shrimp experiment can be used to
illustrate the regression method for predicting an
LC50 value. Juvenile mysid shrimp were randomly
assigned to a series of diluted refinery effluent solutions
with ten shrimps per tank. There were seven treatments
including a control with duplicate tanks per treatment.
Concentrations were expressed as the percentages of total
exposure volume made up of the effluent. The mortalities
were checked after 48 h of exposure (Table 1). These
data were fit to candidate models of log normal (‘probit’)
and log logistic (‘logit’) by an interative maximum like-
lihood estimation. The associated Pearson �2 statistics
(�2¼ 4.81 for log normal, �2¼ 5.01 for log logistic) indi-
cated that the log normal model provided a better fit than
the log logistic. Figure 2 shows the probits of the pre-
dicted and observed proportions dying at 48 h (expressed
in probit units) versus the natural log of effluent dilution,
and the predicted 95% confidence intervals. (The
observed data for the 0% and 100% mortalities were
not shown because they do not have corresponding probit
values.) Thus the LC50 and the associated lower and
upper 95% confidence intervals can be estimated by
exponentiating the x values corresponding to the probit
of 50% mortality (5), which are 21.9%, 18.4%, and 25.8%,
respectively.

The original use of LD50 and LC50 estimates in classic
toxicology was as a measure of toxicity. For example, a
mammalian toxicologist might use a set of LD50 values to
determine the relative toxicities of a series of poisons or to

assess how different factors influence the toxicity of a

single poison or drug. In such applications, the exposure

durations would be set for convenience, for example, acute

toxicity after 96 h of exposure because a 96 h test fits

conveniently in a workweek, and still generates a mean-

ingful metric of toxicity. So, a p of 0.5 and 96 h test

duration might be used for statistical and logistical con-

venience, not because they reflect pivotal values relative

to an acceptable or unacceptable effect to humans.
These regression-derived effect metrics were borrowed

by ecotoxicologists who then attempted to apply them to

making decisions about the concentration or amount of a

chemical that should be a concern if present in an
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environmental media. Given the multiple levels of biolo-

gical organization that an ecotoxicologist must consider in

such a decision, it should be no surprise that these effect

metrics do not provide all of the information needed to

make an informed decision. Often the duration selected

for LDx or LCx estimation is different from that of inter-

est; so extrapolation is required to predict the p associated

with an exposure duration other than that used in the test.

Such extrapolation can generate unacceptable, or mini-

mally, undefined uncertainties in predictions. The

associated uncertainty can be reduced by noting the pro-

portions responding in a series of durations during the test

and estimating several LDx/LCx for these different dura-

tions or by applying survival time regression models

instead. Another shortcoming of these effect metrics is

that mortality occurring during the period following expo-

sure is rarely measured. Some toxicant exposures produce

considerable post-exposure mortality that is important to

consider when making predictions of effects to populations

exposed in the environment to the chemical of interest.

A third shortcoming is not as much one of the regression-

related metrics but rather of the decision-making process

using these metrics. Often the responsible risk assessors or

decision makers lack the expertise or information to deter-

mine what level of predicted effect (p) should be used as a

cutoff for unacceptable adverse effect to exposed indivi-

duals, populations, or ecological communities. This can

make the regression-related metrics less appealing to
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(data from Table 1). The organisms that died in response to the treatm

The treatments for which the effect is statistically different (�¼0.05) fr

this example, the effect was death after the exposure although other r
assessors and managers than the hypothesis test-based
methods described in the following section.
Effect Metrics Derived with Hypothesis
Tests

Developed initially to cope with dose/concentration–
response data for which an acceptable model could not
be developed, hypothesis test-based methods now are
applied heavily in tests of chronic or subtle effects. As
will be shown, the intent is to estimate a threshold con-
centration or dose above which an observable effect might
be expected. Most, but not all, relevant statistical methods
are conventional hypothesis tests.

The general approach (Figure 4) is similar to that
shown in Figure 1 but the variance within and among
treatments are assessed instead of developing a dose/
concentration–effect model. A series of dose, dilution, or
concentration treatments are established with replication
within each treatment. After a specific duration, the level
of effect manifesting within each treatment is scored and
that for each treatment compared statistically to that in
the reference treatment. As shown in Figure 4, each
treatment for which the effect is statistically significantly
different from that of the reference treatment is identified
(denoted with an asterisk in the figure). The lowest treat-
ment concentration with a response statistically different
concentration)

*

*

* *

25% 32% 56% 100%

methods and (b) the determination of NOEC, LOEC, and MATC

ent are denoted in black and those still living are denoted in white.

om that of the reference treatment are denoted with an asterisk. In

esponses can, and often are, used in these kinds of experiments.
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from that of the reference (e.g., 0%) is called the ‘lowest

observed effect concentration’ (LOEC). The highest

treatment concentration with a response that is not sig-

nificantly different from the reference response is called

the ‘no observed effect concentration’ (NOEC). Although

formally a dubious inference from hypothesis testing,

the NOEC and LOEC are pragmatically treated in eco-

toxicology as the lower and upper bounds for the

‘maximum acceptable toxicant concentration’ (MATC),

that is, a threshold concentration presumed to be ‘safe’.

Extending this pragmatic approach, the geometric mean

of the NOEC and LOEC is sometimes used as the best

estimate of the MATC. Considerable debate continues

about the acceptability of such interpretations of these

hypothesis test-derived metrics.
A range of hypothesis tests are commonly applied to

NOEC and LOEC estimation including parametric and

nonparametric tests (Figure 5). These tests differ in their

underlying assumptions and consequent ability to detect a

significant difference if there was one, that is, their statis-

tical power. The tests carrying the most assumptions are

generally the most powerful. However, the differences in

power can be trivial or critical depending on the specific

tests being compared and the qualities of the data. As

important examples in Figure 5, the parametric tests are

generally more powerful than the nonparametric tests and

tests assuming a monotonic trend with treatment concen-

tration are more powerful than those that do not assume a

monotonic trend. With the hypothesis testing approach,

the data (concentration, dilution, or dose vs. effect level

for each treatment replicate) might be used directly, or as

commonly done for proportions responding, transformed
Response d
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Figure 5 Parametric and nonparametric hypothesis tests that are c
in order to meet assumptions of the subsequent hypoth-

esis tests. Formally, the parametric methods can be

applied if the data show no evidence of non-normality

or heterogeneity of variances among treatments.

A powerful parametric trend test (Williams’s) can be used

if an additional assumption of a monotonic trend (increase

or decrease in response) with increasing concentration or

dose is justifiable. In some cases such as in the presence of

hormesis, a monotonic trend would not be expected. If the

assumptions allowing use of the parametric tests are not

met, the less powerful nonparametric methods can still be

used. If a trend is assumed, then the Jonckheere–Terpstra

test can be applied. If not, the less powerful Wilcoxon rank

sum test with a Bonferroni adjustment of experiment-wise

error rate or the Steel’s many-to-one rank test can be used.

These last two tests tend to be the least powerful of the

hypothesis tests described to this point because they carry

the fewest assumptions.
The formal assumptions of and hypotheses tested by

these methods differ in important ways. The most impor-

tant assumption to be met for all is that individuals be

randomly assigned to treatments. The results of the

hypothesis tests are questionable if this fundamental

assumption is not met. The parametric tests further

require that the data be normally distributed although

most are robust to moderate violations of this assumption.

The normality is often tested with a statistic such as the

Shapiro–Wilk statistic (W ). A small value of W (or a p

value less than a predetermined � level such as 0.05) leads

to the rejection of the null hypothesis of normality.

Because the statistical power of the test increases with

sample size, when sample sizes are small, a higher � level
ata

sformation
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may be applied in tests of normality. These methods also
require that the treatments have the same variances, that
is, homogeneity of variances, although again, the methods
are robust to moderate deviations from the homogeneity
of variances assumption. This assumption can be formally
tested with Bartlett’s, Levene’s, or one of several similar
tests. Caution should be taken with the commonly applied
Bartlett’s test because it can be inaccurate even if the data
deviate slightly from being normally distributed.

The common parametric tests differ slightly relative to
the exact hypothesis they test. The hypothesis assessed by
the t-test with Bonferroni adjustment of experiment-wise
error rates and Dunnett’s test is simply that the mean
responses of the treatments are not significantly different
from the mean of the reference (control) treatment.
Williams’s test carries an additional assumption of a
monotonic trend (consistently increasing or decreasing
effect) with dose/concentration. It tests the null hypoth-
esis that there is no monotonic trend.

The nonparametric methods do not require data nor-
mality or homogeneity of variances. With the Wilcoxon
rank sum test with Bonferroni adjustment of experiment-
wise error rates or Steel’s many-to-one rank sum test, the
null hypothesis is that observations in the treatments come
from the same population. The Jonckheere-Terpstra test is
the nonparametric equivalent of the Williams’s test in that it
has an alternate hypothesis of a monotonic trend. Formally,
the null hypothesis for this test is no different in the dis-
tribution of responses among the treatments.

The mysid shrimp data can be used again to illustrate
the hypothesis testing method (Figure 4), although nor-
mally more replicates would be recommended. After
testing for normality and homogeneity of variance, the
data without transformation are tested with Dunnett’s
one-tailed t-test, with the null hypothesis being that the
mean response of each treatment is not significantly higher
than the control mean (experiment-wise �¼ 0.05). The
results show that 10% effluent is the highest concentration
whose response is not significantly higher than the control,
and 18% effluent is the lowest concentration with the
response significantly higher than the control; the NOEC
and LOEC were determined to be 10% and 18%, respec-
tively. Accordingly, the MATC could be estimated as the
geometric mean of the NOEC and LOEC, or 13.4%. If the
log normal (probit) model generated previously had been
used to estimate the proportion dead at the NOEC level
(10% effluent), the prediction would be 8.0% mortality at
the NOEC. The results generally agree between the
regression and hypothesis testing approaches although
such is not always true.

One shortcoming of the approach of applying these
various methods to produce NOEC and LOEC values has
already been discussed in the preceding paragraphs – the
NOEC and LOEC values can vary for the same data set as
a function of the chosen hypothesis test. Also, the NOEC
and LOEC values depend heavily on the experimental
design and statistical aspects of the calculations that influ-
ence statistical power. The power of any test will depend
on the number of observations per treatment, number of
treatments, and variability in the background response.
Literature surveys have demonstrated that the designs
normally applied in effects testing have sufficient power
to detect an approximately 5–10% effect difference in
mammalian toxicology studies and 10–34% effect differ-
ence in ecotoxicology studies. But effects less than these
levels can have unacceptable consequences. A final short-
coming is that these hypothesis testing methods were not
initially designed to infer a biological threshold concen-
tration or dose. A threshold estimated from a test of
statistically significant difference is not necessarily a
good estimate of a significant biological effect threshold.
Inferring Consequences of Exposure

Inferring consequences from these effect metrics is chal-
lenging but essential. Typical for human effects studies
and increasingly common for ecotoxicological studies, the
NOEC can be adjusted in a conservative manner to esti-
mate a reference dose (RfD), reference concentration
(RfC), or acceptable daily intake (ADI). A common set
of adjustments is the following for chronic human
exposure:

RfD ¼ NOEC

UF1 � UF2 � UF3 � UF4 �MF
½3�

where UF1¼ uncertainty adjustment accounting for var-
iation in natural sensitivity within human populations,
UF2¼ uncertainty adjustment if extrapolation was per-
formed from animal data to effects to humans,
UF3¼ uncertainty adjustment if the NOEC comes from
a subchronic test data set, UF4¼ uncertainty adjustment
if the LOEC is used in the calculation instead of an
NOEC, and MF¼ an additional adjustment based on
professional judgment. The value for any of these factors
can range from 1 to 10 depending on the associated level
of uncertainty. This or a similar equation is used to
estimate an RfD in the following manner. The literature
is searched for all relevant NOEC/LOEC data for the
toxicant of interest. The study with the lowest relevant
LOEC is identified and the associated NOEC used in the
calculation (UF4¼ 1). If only the LOEC is available, then
the LOEC is applied instead with an UF4¼ 10. In the
case of chronic human exposure, the RfD is used to
estimate the dose level thought to be below that which
will cause an adverse effect during chronic exposure.
Several types of RfDs are relevant to environmental
exposures including short term, subchronic, chronic, or
developmental RfDs. The RfD or RfC values may also be
developed for different routes of exposure.
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With sufficient knowledge, dose- or concentration-
effect models can also be applied to estimation of RfD
or RfC values. The benchmark dose (BMD) approach
uses regression model predictions for a specified effect
level (benchmark response) instead of an NOEC or
LOEC to estimate the RfD or RfC. Often the lower
95% confidence limit for the estimated BMD (BMDL)
is used instead of the NOEC in the above equation to
estimate a BMD-based RfD. The UF and MF values can
be the same or lower than those used for the NOEC-
based approach. Taking the mysid shrimp data as an
example, the BMD10 could be used to estimate a certain
RfC. The BMD10 is predicted to be 7.2% effluent. This is
the predicted lower 95% confidence interval of the LC10
(10.9% effluent) generated from the log normal (probit)
model. As another example, the Environmental Protection
Agency (EPA) applied such a BMD approach to deter-
mine a human chronic oral methylmercury exposure RfD.
Using information from several epidemiological studies,
the BMD associated with the lowest 5% of methyl-
mercury-exposed children (BMD5) was chosen as the
basis for calculation of the RfD. The primary advantage
of this BMD-based approach is that it avoids many of the
shortcomings described earlier for the hypothesis test-
related effect metrics.

Regardless of how it is calculated, an RfD is used with
information about exposure (e.g., inhalation rates, inges-
tion rates, bioavailability, and exposure duration) to
calculate a maximum allowable concentration (MAC,
maximum permitted concentration in a particular source
such as food, air, drinking water, or soil) or level of
concern (LOC, the concentration in the relevant medium
above which an adverse effect could manifest).

Protection of human health is facilitated with a set of
RfD or RfC values for various exposure scenarios such as
acute, prolonged, lifetime, or developmental exposure.
Relative to ecotoxicological testing, calculations asso-
ciated with estimating ‘safe’ or acceptable exposures are
not as straightforward, requiring consideration of conse-
quences at different stages of life cycles of many species
and several levels of biological organization. Partial and
complete life cycle tests have emerged to address this
requirement. A series of tests are conducted at each
major life stage of a species, quantifying important effects
notionally linked to an individual organism’s fitness. The
lowest effect metric for the various tests in such a com-
plete life cycle test is used to generate regulatory limits or
goals. The cost and difficulty of performing a complete
life cycle test has given rise to a less inclusive set of tests
(partial life cycle tests) that assess only the life stages
thought to be most sensitive. Often these are the early
life stages, leading to a battery of tests called early life

stage tests. The emphasis during the interpretation of

partial or complete life cycle tests is on protection of the

individual; however, the EPA stresses the importance of

considering population protection for most nonendan-

gered or nonthreatened species existing in ecological

communities. That the conventional interpretation of

life cycle test-generated effect metrics does not directly

address population or community level consequences of

exposure is seen as a significant shortcoming in this

approach as currently practiced in ecotoxicology.

Fortunately, resolving this incongruity between metrics

generated with current ecotoxicity tests and prediction of

population- and community-level consequences is cur-

rently a very active area of research.
See also: Acute and Chronic Toxicity.
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