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Abstract

Environmental toxicologists readily adopted QSARs from
pharmacology to predict organic contaminant toxicity. In
contrast, models relating metal ion characteristics to their
bioactivity remain poorly explored and underutilized.
Quantitative Ion Character-Activity Relationships (QI-
CARs) have recently been developed to predict metal
toxicity. The QICAR approach, based on metal-ligand
binding tendencies, has been applied successfully to a wide
range of effects, species, and media on a single metal basis.
In previous single metal studies, a softness parameter and
the |log Keoy|/were among the ion qualities with the
highest predictive value for toxicity.

Here, QICAR modeling is extended to predict toxicity
using data from the US EPA ECOTOX database and for

binary metal mixtures. Using the US EPA ECOTOX
database, predictive single metal models were produced
for four fish species (bluegill, carp, fathead minnow, and
mummichog). Using the Microtox® bioassay, the interac-
tions of binary mixtures of metals (Co, Cu, Mn, Ni, and
Zn) were quantified using a linear model with an
interaction term. A predictive relationship was developed
for metal interaction between metal pairs and the differ-
ence in softness.

This study supports the hypothesis that general prediction
of metal toxicity and interactions from ion characteristics
is feasible. It is important that additional work with metals
of different valences and sizes be done to further enhance
the general accuracy of metal interaction predictions.
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Abbreviations: List of abbreviations used in paper: SAR -
Structure Activity Relationship; QSAR - Quantitative Structure
Activity Relationship; ICAR — Ton Character Activity Relation-
ship; QICAR - Quantitative Ion Character Activity Relationship;
HSAB - Hard and Soft Acid Base Theory; HOMO - Highest
occupied molecular orbital; LUMO - Lowest unoccupied mo-
lecular orbital; LD50 — Median lethal dose; LC50 — Median lethal
concentration; r — Pauling ionic radius; ¥, — electronegativity; Z —
ion charge; AP — [log of the first stability constant for the metal
fluoride] - [log of the stability constant for the metal chloride]; o,
— softness index; |log Koyl — log of the first hydrolysis constant;
AN/AIP - atomic number/ change in ionization potential; AE, —
electrochemical potential of the ion and its first stable reduced
state; w/v — weight to volume ratio; EC50 — median effect
concentration; PRESS - predicted residual sum of squares; n —
number of observations

Quant. Struct.-Act. Relat., 22 (2003)

1 Introduction

Chemists have been interested in predicting bioactivity from
chemical properties since the early 1900s. Structure-activity
relationships (SARs) were developed more than a century ago
to relate organic compound structure to activity. Conceptual
models for qualitatively predicting the effect of both organic
compounds and metals were developed during the early and
middle part of the century. Models for organic compounds
relied on structural similarities of classes of molecules and
metal models were based on atomic size and electrode
potentials. Pharmacologists and mammalian toxicologists
improved SARs by developing methods to quantify effects
based on particular functional groups on molecules. Medical
research proceeded quickly for organic compounds, including
the development of quantitative methods for designing drugs
to specifically target active sites. Environmental toxicologists
adopted these quantitative structure-activity relationships
(QSARs) and applied them to predict bioactivity (i.e., toxicity
or bioavailability) of organic compounds.

Development of methods for metals has not been as
actively pursued. Like SARs and QSARs for organic
compounds, ICARs (ion character-activity relationships)
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and QICARs potentially provide a way to predict bioactiv-
ity based upon toxicant qualities. Bienvenu demonstrated
the periodicity of toxic properties of metals in the early
1960s as referenced in [1]. The periodic correlation with
atomic number and the existence of trends within families of
elements shown in his results suggested the existence of
other correlations more directly linked to metrics of
elemental properties [1]. Building on this foundation, Jones
and Vaughn [1] correlated metrics based on hard and soft
acid and base (HSAB) theory with mouse LD50 values.

Hard and soft acid base theory groups metal ions into
three classes: hard (e.g., Be*?, Al*3, Fe*3), soft (e.g., Cu*,
Ag*, Hgt, Pt*?), and borderline (e.g., Fe™2, Co*?, Nit2, Zn*?2,
Cu*?) metal ions. Hard acids preferentially bind to O or N,
soft acids to S, and the borderline ions form stable
complexes with S, O, or N. The energy difference between
the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO) can be
related to HSAB theory. Hard species have large HOMO-
LUMO differences, and soft species have small differences.
The presence of low-lying unoccupied molecular orbitals
capable of mixing with the ground state accounts for the
polarizability of soft atoms. Such polarizability allows
distortion of electron clouds to reduce repulsion [2]. The
consequence of high polarizability is that the cation actually
penetrates the anionic electron cloud producing a predom-
inately covalent bond.

Hard and soft acid base concepts relate to toxicity
patterns. Jones and Vaughn plotted LD50 data for 25 metals
versus the “softness parameter,” a measure of the hard/soft
character of the ions. They found that the relationship
between softness and metal LD50 values was clearer if
metals were grouped as hard, soft, or borderline acids [1].

Newman and colleagues proposed that ICARs could be
extended to produce useful QICARs. Their studies [3-7]
assessed several ion characters, reflecting metal-ligand
binding tendencies. The electronegativity (y,) and the
Pauling ionic radius (r) were combined to produce a
covalent index (¥’r), quantifying the relative importance
of covalent versus electrostatic interactions during metal-
ligand binding. The ion charge (Z) and Pauling ionic radius
were combined to form a second index, the cation polarizing
power (Z*/r), reflecting the energy of the metal ion during
electrostatic interaction with a ligand. The AP ([log of the
first stability constant for the metal fluoride] — [log of the
stability constant for the metal chloride]) reflects covalent
bond stability of the metal-ligand complex. The softness
index (o,) used by Jones and Vaughn reflects metal ion
softness, or the tendency for the outer electron shell to
deform (i.e., polarizability), and the ions tendency to share
electrons with ligand donor atoms. The absolute value of the
log of the first hydrolysis constant ( | log Koy | ) was used as a
metric of metal affinity to intermediate ligands such as those
with O donor atoms. They included the approach of Kaiser
[8] that used ionization potential (AN/AIP), and the differ-
ence between the electrochemical potential of the ion and its
first stable reduced state (AE,). Atomic number (AN)

reflecting ion inertia or size was combined with AIP (the
difference in ionization potentials for the ion oxidation
number OX and OX-1) which reflected ionization potential.
The absolute difference between the electrochemical po-
tential of the ion and its first stable reduced state (AE,),
reflected the ability of an ion to change electronic state [3].

There were several progressive stages to their studies. The
first used the marine bacterium Vibrio fischeri (Microtox®)
and a second used the soil nematode, Caenorhabditis
elegans. The |log Koy| provided the best fit for nine divalent
metals in a standard Microtox® test (2% (w/v) NaCl
solution) using free ion concentrations [5]. Using a modified
Microtox® test (3.02% (w/v) NaNO; solution) for twenty
metals, models generated with each of these metal ion
characteristics were significant (slope significantly different
from 0) in both one and two factor models, except AN/AIP.
The softness parameter was the single variable that best
predicted total dissolved metal EC50 values for the Micro-
tox® tests. Fitting the model using free metal ion concen-
trations produced similar results, except that those using
either AN/AIP or Z?/r were not statistically significant (o =
0.05). The best one-variable model used the softness index
and the best two-variable model was a combination of |log
Kouland y,,2r. Modeling the metals by valence improved
model fits, although the number of data points for mono-
and trivalent metal ions were low [4].

The C. elegans test results were presented in a manner
similar to the Microtox® tests. The ion characteristic in the
best model for nine divalent metals was |log Kgyl[7]-
Regardless of the LC50 metameter used (free ion or total),
all ion characteristics except AN/AIP were statistically
significant in the model including 18 metals. The best
predictive relationships were found between LC50 values
and the absolute value of the first hydrolysis constant ( | log
Kon|) and a two-variable model containing both |log
Kou|and y,,’r. Speciation did not improve model fit in the
models containing 18 metals [6].

In the third stage of their studies, the softness parameter
and the first hydrolysis constant were found to work well in
the development of QICARSs for 19 diverse data sets taken
from the literature. These data sets reported effects of seven
or more metals to a variety of organisms and endpoints
including enzyme inactivation, cultured cell viability, ger-
mination inhibition of fungi, bioaccumulation in a marine
diatom, inhibition of bacterial bioluminescence (Micro-
tox®), acute toxicity to soil nematodes and an array of
aquatic invertebrates, and chronic effects on lethal or
sublethal endpoints. Recent work by other groups has
used this approach with additional ion qualities and plant [9]
or mammalian species [10].

Establishment of good predictive QICARs for single
metal effects provides the groundwork for the next stage of
study. Models with predictive value were developed for
metals singly from metal ion characteristics that reflected
metal-ligand binding tendencies. The next logical steps in
exploring the robustness of the QICAR approach is to
expand on the single metal examples in the literature using
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Table 1. 96 h LC50 values by species for each metal used from the USEPA Ecotox database system reported as number of observations,

geometric mean (uM), and range (uM).

Species Ag Cd Co Cu Fe Hg Ni Pb Zn
Common Carp NA® 12,17, 1, 5650, 3,23, NA 6, 1.7, 11, 140, NA 7,18,
0.05-1900 5650 1.7-3.6 0.35-22 22-820 6.9-34
Bluegill NA 9, 44, NA 7,17, 1, 360, 2, 1.1, 6, 360, 2, 490, 7, 100,
14-430 11-34 360 0.59-2.0 88-1100  110-2100  64-150
Fathead Minnow 4, 17, 38, 9.6, 1, 370, NA 1, 3, 16, 240, 10, 280, 10, 87,
47-52  0.04-650 370 390,390 0.78,0.75-0.83  53-850 3.9-16000  6.0-730
Mummichog NA 15, 420, 1, 4700, 2,15, NA 10, 1.7, 3, 2600, NA 3, 490,
200-1000 4700 6.3-36 0.34-7.5 7.5-6000 270-920

2 NA - Data not available in EPA ECOTOX database.

available databases and to develop relationships for pre-
dicting interactions in binary metal mixtures.

2 Materials and Methods

2.1 US EPA ECOTOX database

Data were taken from the US EPA Ecotox database system
(http://www.epa.gov/cgi-bin/ecotox search) for four fish,
Carp (Cyprinus carpio), Mummichog (Fundulus heterocli-
tus), Bluegill (Lepomis macrochirus), and Fathead Minnow
(Pimephales promelas), often used in toxicity testing,
exposed to eight metal chloride salts (Ag, Cd, Co, Cu, Hg,
Ni, Pb, and Zn). The data were those for 96 h LC50 tests
only. Duplicate citations of the same study within the
database were removed and the geometric mean of the
remaining LC50 values was calculated (Table 1). The geo-
metric mean was used for LC50 values to limit the influence
of outlying values, of which there were a few across all data
sets. Metal concentrations were converted from pg/L to
molar and log transformed. Linear regression models were
generated with two variables that had previously had much
success in predicting toxicity (softness and |log Ky | ) using
the SAS procedure GLM (SAS® Institute, Cary, NC, USA).
Values for the ion characteristics used in this study were
taken from McCloskey et al. [4].

2.2 Microfox Mixture Study

The Microtox® bacterial assay was used to provide 15-min
EC10, EC20, EC30, EC40, and EC50 values and concen-
tration-effect relationships for five divalent metals ions:
Co*?, Cu*?, Mn*?, Ni*2, and Zn*2. A 3.02% (w/v) NaNO,
solution was prepared with reagent grade NaNO; in
deionized water and the solution was filtered through a
0.45 pm filter. Nitrate salts were used in this series of tests to
represent a freshwater environment rather than a marine
system. We also wished to avoid complications from metal-
Cl binding that would be present in a chloride salt solution.
A stock metal solution was prepared daily for the toxicity
testing with the nitrate salt of the metal in the NaNO;
solution. Serial dilutions of the stock solution were made
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to create a series of seven concentrations. A reconstituted
marine bacterium (Vibrio fischeri) was exposed at 15°C to
solutions of the metals. Bioluminescence was quantified
over a range of metal concentrations using a Microtox®
Model 500 toxicity analyzer (Microbics Corp., Carlsbad,
CA, USA). The metal concentrations resulting in a 10, 20,
30, 40, and 50% decrease in light output after 15 min of
exposure were calculated from this curve.

Single metal effect concentrations used in the mixture
experiments were calculated based on the mean of three or
more replicate tests using bacteria from two different lots.
Effect concentrations for each individual test were calcu-
lated using the procedure PROBIT of the SAS system
(SAS® Institute, Cary, NC, USA).

Binary mixtures of metals were tested using six concen-
trations of one metal (EC0, EC10, EC20, EC30, EC40, and
EC50) combined with five concentrations of the second
metal, with a blank control. The EC0 was defined as the case
in which one of the metals was not included. Metal solutions
were prepared as above and serial dilutions were made for
each combination of exposure concentrations to be tested.
Each combination was run as tandem duplicates, and then
again to produce four measurements of the decrease in light
output for each combination of concentrations. This exper-
imental design was used in order to produce a response
surface for each binary mixture.

Metal interactions for each binary pair of metals were
calculated with a mixed model: the arcsine square root of the
proportional decrease in bioluminescence as a function of
day, Microtox® reagent lot, effect of metal 1, effect of metal
2, and metal interaction. The SAS procedure MIXED was
used to produce the response surface containing the effect of
metal 1, the effect of metal 2, and the metal interaction as
fixed effects, with day of test and Microtox® bacteria lot as
random terms in the model. The metal interaction is the
random effect due to the ith level of the effect of metal 1 and
the jth level of effect of metal 2, and is normally distributed.
Day of test and bacteria lot were included to access any
influence different reagent lots or day of analysis might have
had on the model. Linear regression models of the metal
interaction with the absolute value of the difference in ionic
qualities for each of the pairs of metals were produced using
the SAS GLM procedure (SAS® Institute, Cary, NC, USA).
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Table 2. Correlation coefficients (r?), F-statistics, and deviation from perfect prediction for QICAR relationships using 96 h LC50 data
retrieved from the USEPA Ecotox database system. The number of metals listed is the number of data points used in the model.

Species Metals® Softness o, |log Koy |

(Common name) r F p Dev® r* F P Dev®
Cyprinus carpio (Common Carp) Cd, Co, Cu, Hg, Ni, Zn 0.56 5.01 0.089 18.6(15) 0.37 234 020 22.5(13)
Lepomis macrochirus (Bluegill) Cd, Cu, Fe, Hg, Ni, Pb, Zn 0.72 1255 0.016 9.1(12) 0.07 040 0.55 17.5(16)
Pimephales promelas (Fathead Minnow) Ag, Cd, Co, Fe, Hg, Ni, Pb, Zn 0.79 22.79 0.003 7.6(7) 0.01 0.07 0.80 18.7(10)
Fundulus heteroclitus (Mummichog) Cd, Co, Cu, Hg, Ni, Zn 0.64 7.07 0.056 15.0(17) 0.78 14.51 0.019 14.6(16)
2 All tests used metal chloride salts in fresh water, except for Fundulus heteroclitus which was tested in salt water.

> Mean relative deviation from perfect fit expressed as a percentage, [(Observed)-(Fitted)/ (Observed)] x100, and interquartile range

Table 3. Single Metal Microtox® Results =SD (uM)

EC Mn (n=23)* Co (n=4) Ni (n=4) Zn (n=3) Cu (n=5)
10 48.5£57.0 90.0+45.8 86.1£59.1 81+138 1.2+0.1
20 210204 258.1+67.5 197.3+£97.8 15.9+3.7 1.6+0.1
30 619 £ 496 568.1+91.2 365.2+130.3 259462 1.8+0.2
40 1583 +£1022 1137 +£258 626.6 £158.2 393+9.5 22402
50 3868 £ 1937 2208 £767 1049 +£208 58.1+14.3 25403

* n=number of experiments

The mean relative deviation from perfect fit was expressed
as a percentage, [(Observed interaction)-(Fitted interac-
tion)/ (Observed interaction)] x 100.

3 Results

3.1 US EPA ECOTOX database

Toxicity data for six or more metal chlorides were found for
the four fish species in the US EPA ECOTOX database.
Metal ion characteristics (softness and |log Koy |) were
then used to develop predictive models. Both softness and |
log Kyl produced good relationships with the data avail-
able (Table 2). Softness produced the best model for the
freshwater exposures (carp, bluegill, and fathead minnow),
and |log Koy produced the best model for the saltwater
exposure (mummichog) based upon r? values, F-statistics,
and mean relative deviation from fit.

3.2 Microtox® mixtures

The 15-min EC10, 20, 30, 40, and 50 values (+standard
deviation) of the total metal ion are provided in Table 3. The
EC50 values ranged from 2.5 pM for Cu to 3868 uM for Mn.

The effect concentrations from Table 3 were used in
binary combinations in the acute Microtox® test to measure
the interactions of each pair. Each of the metal concen-
trations (the concentrations that caused an EC10, 20, 30, 40,
and 50) was used alone and in the binary metal mixture
during each set of tests. The metal interaction for each of the
ten metal combinations reported in Table 4 were calculated
based on the measured effect concentrations of the single

Table 4. Metal Interaction Coefficients for Microtox® + Standard
Error

Cu Zn Ni Co
Mn —156(0.25) —2.54(029) —2.61(0.25) —2.06(0.24)
Co —1.07 (0.06) —1.41(024) -—2.12(0.31)
Ni  —0.39(0.34)* —1.75(0.18)

Zn  —220 (0.32)

* p=0.259, All other interaction coefficients were significant at p < 0.001.

metal exposures (the ECO series), not the calculated ones
from the single metal test. For example, if the concentration
that was calculated to cause an EC10 effect actually caused a
12% effect, then 0.12 was used in the model calculations. All
metal interactions were significant (p <0.001) in their
respective mixed models, except that for the Cu and Ni
mixture (p=0.259). Day and Microtox® reagent lot varia-
bles were not significant in any model (o =0.05).

The difference in softness between paired metal ions
(Ao,) produced the best relationship with metal interactions
based on 1? values, F-statistics, and deviation from perfect
prediction (Table 5). The differences in the other seven
chemical properties examined produced poorer regression
relationships with the metal interactions.

4 Discussion
Quantitative ion character-activity relationships can be

derived from toxicity databases lacking sufficient informa-
tion with which to include speciation calculations, (e.g., to
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Table 5. Metal interaction models fitted for eight ion character-
istics.

PRESS* Model** Mean

relative

Metal Interaction =f(x) r?
deviation from fitf

A(0) 0.69 2.1 68.5x-2.63 142
A(Z?Ir) 026 4.4 —123x-125 198
A(Log Koy) 022 53 045x-232 248
A(X,,) 021 56 —225x-133 302
A(AE,) 0.18 6.0 —0.95x-1.34 309
A(X?r) 007 65 —0.67x-151 267
A(AIP) 0.04 5.8 0.098x-1.98 25.6
A(AN/AIP) 0.00 6.4 —0.013x-1.76 22.4

* Predicted Residual Sum of Squares
** Model referred to here is metal interaction
+ Expressed as a percentage: [(Obs — Fitted)/Obs]*100

estimate free, aquated ion concentrations). Data were
retrieved for four fish (bluegill, carp, fathead minnow, and
mummichog) and were used to develop predictive relation-
ships based on metal-ligand binding characteristics. This is
an assessment of the robustness of the QICAR approach. It
reflects the case where speciation calculations cannot be
performed to improve the QICAR models because of lack
of data being reported. The water chemistry probably varied
significantly among the tests for the different metals but was
not reported. The toxicity for the three freshwater fish was
predicted with the softness parameter. This is consistent
with previous studies using Microtox® in freshwater [4],
Daphnia magna, Planaria, and mice [3]. The toxicity for the

mummichog in saltwater was predicted with |log Koy .
Microtox® effects [5], Nematode toxicity [6, 7] and enzyme
inhibition [3] in marine solutions were predicted with |log
Kon] -

Models predicting intermetal trends in toxicity have been
underexplored. Environmental toxicologists have adopted
quantitative structure activity relationships for organic
compounds, but similar development of such methods for
metal toxicity has not occurred. Single metal quantitative
ion character activity relationships (QICARSs) are possible
for a range of metals (mono-, di-, and trivalent), and
organisms (bacteria, nematodes, algae, amphipods, and
mice) based on metal-ligand binding theory [3]. The softness
parameter (0,) and the log of the first hydrolysis constant
(|log Koy |) were the characteristics that best predicted
single metal effect on microbial bioluminescence [4, 5] and
nematode toxicity [6,7].

The interactions of metals in mixture have typically been
addressed in a descriptive manner in the literature (e.g., [11,
12]). This study addressed metal interactions based on
fundamental chemistry principles. It is the connection of
QICARs to mechanism that allows scientific explanation of
activity variations for tested metals and provides the basis
for the quantitative prediction of activity for untested
metals. The interaction of metal mixtures can be predicted
by ion characteristics. Relationships between ion character-
istics and metal interactions were estimated for ten metal
pair Microtox® tests. Similar to the single metal Microtox®
tests, prediction of metal interactions was best made by the
difference in softness for Microtox® interactions. This model
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Figure 1. Difference in softness versus calculated Microtox® metal interaction coefficients (+standard error) produced the regression

equation: metal interaction = 68.5(Ac,) — 2.63; 1> =0.69.
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accounted for 69% of the variation in metal interaction for
the ten tested binary mixtures (pairs of Co, Cu, Mn, Ni, and
Zn). Other models accounted for less than 30% of the
variation. This suggests that the similarity between two
metal ions in their tendencies to accept an electron during
interaction with a ligand was important in predicting
interactions in the Microtox® system.

The effect measured in the Microtox® system was a
decrease in bioluminescence. Toxicants were thought to
interfere with the production of light by interrupting
electron flow or binding to active sites on enzymes. As the
difference in the ability of a metal ion to accept an electron
increased (i.e., Ao, increased), the interaction of the metals
approached negative one (Figure 1). The metal interaction
approaches — 1 as the metal’s actions become independent.
As the system deviates from independent action, the metal
interaction decreases from —1. This study supports the
hypothesis that o, or preference to bind to a particular type
of ligand is important not only in prediction of single metal
toxicity, but also in the prediction of metal interactions.

Application of the QICAR approach to predicting the
interaction of metals was done by Newman and McCloskey
[S]- They found qualitative trends based on estimating the
intersection of lines calculated from the probit of first order
rate constants for a series of potentially competing metal
ions. Strong interactions were noted between Cu*? and Pb*2,
but no apparent interactions were noted for Cu*? and Mg*?
nor Ca*? and Mg*? metal ion pairs. Metals combined with
Mg*2, a metal with weak covalent interactions with N, S, and
O containing ligands, showed little evidence of interaction in
the Microtox® test. In contrast, pairing metals with strong
tendencies to complex with intermediate or soft ligands such
as those with O or S donor atoms resulted in strong
interactions. The hypothesis that interactions reflected
competition for ligand sites of biomolecules was supported
for their qualitative testing. They proposed that refinement
of their semiquantitative methods was needed.

Newman et al. [3] reanalyzed the data from the Newman
and McCloskey [5] paper with a more formal analysis that
included using the SAS procedure MIXTURE with an
interaction term (i.e., metal;, concentration x metal, con-
centration). They concluded that although there were
qualitative indications of concentration-dependent interac-
tions between metals with similar and high covalent binding
tendencies, no statistically significant trends were evident in
their formal analysis. In addition, the only significant trends
in the intensity of the interaction term for both of their series
of mixtures was a consequence of increasing EC50 values
with decreasing covalent interactions that they concluded
was a scaling artifact in the data analysis.

The scaling artifact was avoided in the work presented in
this paper by using proportions of effect in the analysis
rather than concentration. Concentrations in the earlier
tests ranged over several orders of magnitude and caused a

scaling effect on the data analysis. The use of proportions
avoided the confounding scaling effect present in earlier
work [3, 5] and a revised statistical design of the experiment
facilitated the development of predictive relationships for
binary interactions using ion characteristics with the simple
Microtox® test system. Future research for QICAR mixture
models could include a more complex organism, matrix (i.e.,
salt water, soil, or sediment), or combinations of these
factors.
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